These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 25167929)
1. Development and characterization of low α-linolenic acid Brassica oleracea lines bearing a novel mutation in a 'class a' FATTY ACID DESATURASE 3 gene. Singer SD; Weselake RJ; Rahman H BMC Genet; 2014 Aug; 15():94. PubMed ID: 25167929 [TBL] [Abstract][Full Text] [Related]
2. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants. Rahman H; Singer SD; Weselake RJ Theor Appl Genet; 2013 Jun; 126(6):1587-98. PubMed ID: 23475317 [TBL] [Abstract][Full Text] [Related]
3. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Yang Q; Fan C; Guo Z; Qin J; Wu J; Li Q; Fu T; Zhou Y Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790 [TBL] [Abstract][Full Text] [Related]
4. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. Bocianowski J; Mikołajczyk K; Bartkowiak-Broda I J Appl Genet; 2012 Feb; 53(1):27-30. PubMed ID: 21912934 [TBL] [Abstract][Full Text] [Related]
5. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Hu X; Sullivan-Gilbert M; Gupta M; Thompson SA Theor Appl Genet; 2006 Aug; 113(3):497-507. PubMed ID: 16767448 [TBL] [Abstract][Full Text] [Related]
7. Engineering the Staple Oil Crop Xue YF; Fu C; Chai CY; Liao FF; Chen BJ; Wei SZ; Wang R; Gao H; Fan TT; Chai YR J Agric Food Chem; 2023 May; 71(19):7324-7333. PubMed ID: 37130169 [TBL] [Abstract][Full Text] [Related]
8. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Lee KR; In Sohn S; Jung JH; Kim SH; Roh KH; Kim JB; Suh MC; Kim HU Gene; 2013 Dec; 531(2):253-62. PubMed ID: 24029080 [TBL] [Abstract][Full Text] [Related]
9. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content. Rajwade AV; Kadoo NY; Borikar SP; Harsulkar AM; Ghorpade PB; Gupta VS Phytochemistry; 2014 Feb; 98():41-53. PubMed ID: 24380374 [TBL] [Abstract][Full Text] [Related]
10. Fatty acid desaturase 3 (PsFAD3) from Paeonia suffruticosa reveals high α-linolenic acid accumulation. Yin DD; Xu WZ; Shu QY; Li SS; Wu Q; Feng CY; Gu ZY; Wang LS Plant Sci; 2018 Sep; 274():212-222. PubMed ID: 30080606 [TBL] [Abstract][Full Text] [Related]
11. Transcript profiling and gene characterization of three fatty acid desaturase genes in high, moderate, and low linolenic acid genotypes of flax (Linum usitatissimum L.) and their role in linolenic acid accumulation. Banik M; Duguid S; Cloutier S Genome; 2011 Jun; 54(6):471-83. PubMed ID: 21627464 [TBL] [Abstract][Full Text] [Related]
12. Comparative Transcriptome Analysis Reveals an Efficient Mechanism of α-Linolenic Acid in Tree Peony Seeds. Zhang Q; Yu R; Sun D; Rahman MM; Xie L; Hu J; He L; Kilaru A; Niu L; Zhang Y Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30586917 [TBL] [Abstract][Full Text] [Related]
13. HO-CR and HOLL-CR: new forms of winter oilseed rape (Brassica napus L.) with altered fatty acid composition and resistance to selected pathotypes of Plasmodiophora brassicae (clubroot). Spasibionek S; Mikołajczyk K; Matuszczak M; Kaczmarek J; Ramzi N; Jędryczka M J Appl Genet; 2024 Sep; 65(3):439-452. PubMed ID: 38637489 [TBL] [Abstract][Full Text] [Related]
14. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. Bai S; Engelen S; Denolf P; Wallis JG; Lynch K; Bengtsson JD; Van Thournout M; Haesendonckx B; Browse J Plant J; 2019 Apr; 98(1):33-41. PubMed ID: 30536486 [TBL] [Abstract][Full Text] [Related]
15. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit. Hernández ML; Sicardo MD; Martínez-Rivas JM Plant Cell Physiol; 2016 Jan; 57(1):138-51. PubMed ID: 26514651 [TBL] [Abstract][Full Text] [Related]
17. Selection of mutants with high linolenic acid contents and characterization of fatty acid desaturase 2 and 3 genes during seed development in soybean (Glycine max). Hong MJ; Jang YE; Kim DG; Kim JM; Lee MK; Kim JB; Eom SH; Ha BK; Lyu JI; Kwon SJ J Sci Food Agric; 2019 Sep; 99(12):5384-5391. PubMed ID: 31077382 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of α-linolenic acid content in transgenic tobacco seeds by targeting a plastidial ω-3 fatty acid desaturase (fad7) gene of Sesamum indicum to ER. Bhunia RK; Chakraborty A; Kaur R; Maiti MK; Sen SK Plant Cell Rep; 2016 Jan; 35(1):213-26. PubMed ID: 26521211 [TBL] [Abstract][Full Text] [Related]
19. Chilling-sensitive, post-transcriptional regulation of a plant fatty acid desaturase expressed in yeast. Dyer JM; Chapital DC; Cary JW; Pepperman AB Biochem Biophys Res Commun; 2001 Apr; 282(4):1019-25. PubMed ID: 11352654 [TBL] [Abstract][Full Text] [Related]
20. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Huang H; Cui T; Zhang L; Yang Q; Yang Y; Xie K; Fan C; Zhou Y Theor Appl Genet; 2020 Aug; 133(8):2401-2411. PubMed ID: 32448919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]