BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25167932)

  • 1. Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries.
    Choi SH; Ko YN; Lee JK; Kang YC
    Sci Rep; 2014 Aug; 4():5786. PubMed ID: 25167932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion.
    Park GD; Cho JS; Kang YC
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16842-9. PubMed ID: 26186601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and electrochemical performance of hollow-structured NiO + Ni nanofibers wrapped by graphene as anodes for Li-ion batteries.
    Yuan B; Li J; Xia M; Zhang Y; Lei R; Zhao P; Li X
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33979782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergetic compositional and morphological effects for improved Na⁺ storage properties of Ni₃Co₆S₈-reduced graphene oxide composite powders.
    Choi SH; Kang YC
    Nanoscale; 2015 Apr; 7(14):6230-7. PubMed ID: 25779096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot rapid synthesis of core-shell structured NiO@TiO2 nanopowders and their excellent electrochemical properties as anode materials for lithium ion batteries.
    Choi SH; Lee JH; Kang YC
    Nanoscale; 2013 Dec; 5(24):12645-50. PubMed ID: 24177597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries.
    Lee SM; Choi SH; Kang YC
    Chemistry; 2014 Nov; 20(46):15203-7. PubMed ID: 25266199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniform decoration of vanadium oxide nanocrystals on reduced graphene-oxide balls by an aerosol process for lithium-ion battery cathode material.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(21):6294-9. PubMed ID: 24715540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal Organic Frameworks Derived Hierarchical Hollow NiO/Ni/Graphene Composites for Lithium and Sodium Storage.
    Zou F; Chen YM; Liu K; Yu Z; Liang W; Bhaway SM; Gao M; Zhu Y
    ACS Nano; 2016 Jan; 10(1):377-86. PubMed ID: 26592379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries.
    Park GD; Choi SH; Lee JK; Kang YC
    Chemistry; 2014 Sep; 20(38):12183-9. PubMed ID: 25111441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of NiO Nanofibers Composed of Hollow Nanospheres with Controlled Sizes by the Nanoscale Kirkendall Diffusion Process and Their Electrochemical Properties.
    Cho JS; Lee SY; Ju HS; Kang YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25641-7. PubMed ID: 26548478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast synthesis of yolk-shell and cubic NiO Nanopowders and application in lithium ion batteries.
    Choi SH; Kang YC
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2312-6. PubMed ID: 24490667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and electrochemical properties of spherical and hollow-structured NiO aggregates created by combining the Kirkendall effect and Ostwald ripening.
    Cho JS; Won JM; Lee JH; Kang YC
    Nanoscale; 2015 Dec; 7(46):19620-6. PubMed ID: 26549333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-Ion Storage Properties of FeS-Reduced Graphene Oxide Composite Powder with a Crumpled Structure.
    Lee SY; Kang YC
    Chemistry; 2016 Feb; 22(8):2769-74. PubMed ID: 26789137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly reversible Li storage in hybrid NiO/Ni/graphene nanocomposites prepared by an electrical wire explosion process.
    Lee DH; Kim JC; Shim HW; Kim DW
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):137-42. PubMed ID: 24125092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple Solution Plasma Synthesis of Ni@NiO as High-Performance Anode Material For Lithium-ion Batteries Application.
    Beletskii E; Pinchuk M; Snetov V; Dyachenko A; Volkov A; Savelev E; Romanovski V
    Chempluschem; 2024 Jun; ():e202400427. PubMed ID: 38926095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect.
    Park GD; Cho JS; Kang YC
    Nanoscale; 2015 Oct; 7(40):16781-8. PubMed ID: 26400766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior lithium-ion storage properties of si-based composite powders with unique Si@carbon@void@graphene configuration.
    Choi SH; Jung DS; Choi JW; Kang YC
    Chemistry; 2015 Jan; 21(5):2076-82. PubMed ID: 25450157
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Kang C; Cha E; Lee SH; Choi W
    RSC Adv; 2018 Feb; 8(14):7414-7421. PubMed ID: 35539106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.