These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25168198)

  • 1. The utility of atlas-assisted segmentation in the male pelvis is dependent on the interobserver agreement of the structures segmented.
    Langmack KA; Perry C; Sinstead C; Mills J; Saunders D
    Br J Radiol; 2014 Nov; 87(1043):20140299. PubMed ID: 25168198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions.
    Simmat I; Georg P; Georg D; Birkfellner W; Goldner G; Stock M
    Strahlenther Onkol; 2012 Sep; 188(9):807-15. PubMed ID: 22669393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of commercial atlas-based automatic segmentation software for prostate radiotherapy treatment planning.
    Hizam DA; Tan LK; Saad M; Muaadz A; Ung NM
    Phys Eng Sci Med; 2024 Sep; 47(3):881-894. PubMed ID: 38647633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of a contouring atlas on radiographer inter-observer variation in male pelvis radiotherapy.
    Clough A; Chuter R; Hales RB; Parker J; McMahon J; Whiteside L; McHugh L; Davies L; Sanders J; Benson R; Nelder C; McDaid L; Choudhury A; Eccles CL
    J Med Imaging Radiat Sci; 2024 Jun; 55(2):281-288. PubMed ID: 38609834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features.
    Macomber MW; Phillips M; Tarapov I; Jena R; Nori A; Carter D; Folgoc LL; Criminisi A; Nyflot MJ
    Phys Med Biol; 2018 Nov; 63(23):235002. PubMed ID: 30465543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest.
    Roach D; Holloway LC; Jameson MG; Dowling JA; Kennedy A; Greer PB; Krawiec M; Rai R; Denham J; De Leon J; Lim K; Berry ME; White RT; Bydder SA; Tan HT; Croker JD; McGrath A; Matthews J; Smeenk RJ; Ebert MA
    J Med Imaging Radiat Oncol; 2019 Apr; 63(2):264-271. PubMed ID: 30609205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies.
    Haas B; Coradi T; Scholz M; Kunz P; Huber M; Oppitz U; André L; Lengkeek V; Huyskens D; van Esch A; Reddick R
    Phys Med Biol; 2008 Mar; 53(6):1751-71. PubMed ID: 18367801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial.
    Geraghty JP; Grogan G; Ebert MA
    Radiat Oncol; 2013 Apr; 8():106. PubMed ID: 23631832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study.
    Tao CJ; Yi JL; Chen NY; Ren W; Cheng J; Tung S; Kong L; Lin SJ; Pan JJ; Zhang GS; Hu J; Qi ZY; Ma J; Lu JD; Yan D; Sun Y
    Radiother Oncol; 2015 Jun; 115(3):407-11. PubMed ID: 26025546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical validation of an automatic atlas-based segmentation tool for male pelvis CT images.
    Casati M; Piffer S; Calusi S; Marrazzo L; Simontacchi G; Di Cataldo V; Greto D; Desideri I; Vernaleone M; Francolini G; Livi L; Pallotta S
    J Appl Clin Med Phys; 2022 Mar; 23(3):e13507. PubMed ID: 35064746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-institutional quantitative evaluation and clinical validation of Smart Probabilistic Image Contouring Engine (SPICE) autosegmentation of target structures and normal tissues on computer tomography images in the head and neck, thorax, liver, and male pelvis areas.
    Zhu M; Bzdusek K; Brink C; Eriksen JG; Hansen O; Jensen HA; Gay HA; Thorstad W; Widder J; Brouwer CL; Steenbakkers RJ; Vanhauten HA; Cao JQ; McBrayne G; Patel SH; Cannon DM; Hardcastle N; Tomé WA; Guckenberg M; Parikh PJ
    Int J Radiat Oncol Biol Phys; 2013 Nov; 87(4):809-16. PubMed ID: 24138920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of atlas-based auto-segmentation software in prostate cancer patients.
    Greenham S; Dean J; Fu CK; Goman J; Mulligan J; Tune D; Sampson D; Westhuyzen J; McKay M
    J Med Radiat Sci; 2014 Sep; 61(3):151-8. PubMed ID: 26229651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers.
    Kim N; Chang JS; Kim YB; Kim JS
    Radiat Oncol; 2020 May; 15(1):106. PubMed ID: 32404123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation and optimization of the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy.
    Wong WK; Leung LH; Kwong DL
    Br J Radiol; 2016; 89(1057):20140732. PubMed ID: 26539630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.
    Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y
    Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atlas-based segmentation in breast cancer radiotherapy: Evaluation of specific and generic-purpose atlases.
    Ciardo D; Gerardi MA; Vigorito S; Morra A; Dell'acqua V; Diaz FJ; Cattani F; Zaffino P; Ricotti R; Spadea MF; Riboldi M; Orecchia R; Baroni G; Leonardi MC; Jereczek-Fossa BA
    Breast; 2017 Apr; 32():44-52. PubMed ID: 28033509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer.
    La Macchia M; Fellin F; Amichetti M; Cianchetti M; Gianolini S; Paola V; Lomax AJ; Widesott L
    Radiat Oncol; 2012 Sep; 7():160. PubMed ID: 22989046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes in target volumes definition by using MRI for prostate bed radiotherapy planning--preliminary results].
    Sefrová J; Paluska ; Odrázka K; Belobradek Z; Hoffmann P; Prosvic P; Brod'ák M; Louda M; Macingová Z; Vosmik M
    Klin Onkol; 2010; 23(4):256-63. PubMed ID: 20806824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technology assessment of automated atlas based segmentation in prostate bed contouring.
    Hwee J; Louie AV; Gaede S; Bauman G; D'Souza D; Sexton T; Lock M; Ahmad B; Rodrigues G
    Radiat Oncol; 2011 Sep; 6():110. PubMed ID: 21906279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.