BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25168392)

  • 1. Intravenous injection of MVA virus targets CD8+ lymphocytes to tumors to control tumor growth upon combinatorial treatment with a TLR9 agonist.
    Fend L; Gatard-Scheikl T; Kintz J; Gantzer M; Schaedler E; Rittner K; Cochin S; Fournel S; Préville X
    Cancer Immunol Res; 2014 Dec; 2(12):1163-74. PubMed ID: 25168392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential administration of a MVA-based MUC1 cancer vaccine and the TLR9 ligand Litenimod (Li28) improves local immune defense against tumors.
    Schaedler E; Remy-Ziller C; Hortelano J; Kehrer N; Claudepierre MC; Gatard T; Jakobs C; Préville X; Carpentier AF; Rittner K
    Vaccine; 2017 Jan; 35(4):577-585. PubMed ID: 28012777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential administration of MVA-based vaccines and PD-1/PD-L1-blocking antibodies confers measurable benefits on tumor growth and survival: Preclinical studies with MVA-βGal and MVA-MUC1 (TG4010) in a murine tumor model.
    Remy-Ziller C; Thioudellet C; Hortelano J; Gantzer M; Nourtier V; Claudepierre MC; Sansas B; Préville X; Bendjama K; Quemeneur E; Rittner K
    Hum Vaccin Immunother; 2018 Jan; 14(1):140-145. PubMed ID: 28925793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells.
    Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB
    Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase I immunotherapy with a modified vaccinia virus (MVA) expressing human MUC1 as antigen-specific immunotherapy in patients with MUC1-positive advanced cancer.
    Rochlitz C; Figlin R; Squiban P; Salzberg M; Pless M; Herrmann R; Tartour E; Zhao Y; Bizouarne N; Baudin M; Acres B
    J Gene Med; 2003 Aug; 5(8):690-9. PubMed ID: 12898638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Murine responses to recombinant MVA versus ALVAC vaccines against tumor-associated antigens, gp100 and 5T4.
    Hanwell DG; McNeil B; Visan L; Rodrigues L; Dunn P; Shewen PE; Macallum GE; Turner PV; Vogel TU
    J Immunother; 2013 May; 36(4):238-47. PubMed ID: 23603858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paradoxical enhancement of CD8 T cell-dependent anti-tumor protection despite reduced CD8 T cell responses with addition of a TLR9 agonist to a tumor vaccine.
    Karan D; Krieg AM; Lubaroff DM
    Int J Cancer; 2007 Oct; 121(7):1520-8. PubMed ID: 17565748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the tumor microenvironment by intratumoral administration of IMO-2125, a novel TLR9 agonist, for cancer immunotherapy.
    Wang D; Jiang W; Zhu F; Mao X; Agrawal S
    Int J Oncol; 2018 Sep; 53(3):1193-1203. PubMed ID: 29956749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiotherapy and MVA-MUC1-IL-2 vaccine act synergistically for inducing specific immunity to MUC-1 tumor antigen.
    Hillman GG; Reich LA; Rothstein SE; Abernathy LM; Fountain MD; Hankerd K; Yunker CK; Rakowski JT; Quemeneur E; Slos P
    J Immunother Cancer; 2017; 5():4. PubMed ID: 28116088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor Microenvironment Remodeling by Intratumoral Oncolytic Vaccinia Virus Enhances the Efficacy of Immune-Checkpoint Blockade.
    Chon HJ; Lee WS; Yang H; Kong SJ; Lee NK; Moon ES; Choi J; Han EC; Kim JH; Ahn JB; Kim JH; Kim C
    Clin Cancer Res; 2019 Mar; 25(5):1612-1623. PubMed ID: 30538109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allogeneic GM-CSF-secreting tumor cell immunotherapies generate potent anti-tumor responses comparable to autologous tumor cell immunotherapies.
    Li B; Simmons A; Du T; Lin C; Moskalenko M; Gonzalez-Edick M; VanRoey M; Jooss K
    Clin Immunol; 2009 Nov; 133(2):184-97. PubMed ID: 19664962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-tumor effect of the alphavirus-based virus-like particle vector expressing prostate-specific antigen in a HLA-DR transgenic mouse model of prostate cancer.
    Riabov V; Tretyakova I; Alexander RB; Pushko P; Klyushnenkova EN
    Vaccine; 2015 Oct; 33(41):5386-5395. PubMed ID: 26319744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving recombinant MVA immune responses: potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-gamma.
    Abaitua F; Rodríguez JR; Garzón A; Rodríguez D; Esteban M
    Virus Res; 2006 Mar; 116(1-2):11-20. PubMed ID: 16214252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted macrophage cytotoxicity using a nonreplicative live vector expressing a tumor-specific single-chain variable region fragment.
    Paul S; Snary D; Hoebeke J; Allen D; Balloul JM; Bizouarne N; Dott K; Geist M; Hilgers J; Kieny MP; Burchell J; Taylor-Papadimitriou J; Acres RB
    Hum Gene Ther; 2000 Jul; 11(10):1417-28. PubMed ID: 10910139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics.
    Guo ZS; Lu B; Guo Z; Giehl E; Feist M; Dai E; Liu W; Storkus WJ; He Y; Liu Z; Bartlett DL
    J Immunother Cancer; 2019 Jan; 7(1):6. PubMed ID: 30626434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-PD1 antibody enhances the anti-tumor efficacy of MUC1-MBP fusion protein vaccine via increasing Th1, Tc1 activity and decreasing the proportion of MDSC in the B16-MUC1 melanoma mouse model.
    Zhang Z; Zhou H; Liu Y; Ren J; Wang J; Sang Q; Lan Y; Wu Y; Yuan H; Ni W; Tai G
    Int Immunopharmacol; 2021 Dec; 101(Pt A):108173. PubMed ID: 34607233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant vaccinia virus expressing interleukin-2 invokes anti-tumor cellular immunity in an orthotopic murine model of head and neck squamous cell carcinoma.
    Dasgupta S; Bhattacharya-Chatterjee M; O'Malley BW; Chatterjee SK
    Mol Ther; 2006 Jan; 13(1):183-93. PubMed ID: 16125469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CXCR6 deficiency impairs cancer vaccine efficacy and CD8
    Karaki S; Blanc C; Tran T; Galy-Fauroux I; Mougel A; Dransart E; Anson M; Tanchot C; Paolini L; Gruel N; Gibault L; Lepimpec-Barhes F; Fabre E; Benhamouda N; Badoual C; Damotte D; Donnadieu E; Kobold S; Mami-Chouaib F; Golub R; Johannes L; Tartour E
    J Immunother Cancer; 2021 Mar; 9(3):. PubMed ID: 33692218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual antigen target-based immunotherapy for prostate cancer eliminates the growth of established tumors in mice.
    Karan D; Dubey S; Van Veldhuizen P; Holzbeierlein JM; Tawfik O; Thrasher JB
    Immunotherapy; 2011 Jun; 3(6):735-46. PubMed ID: 21668311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of vaccine-induced effector CD8 T cell responses directed against self- and non-self-tumor antigens: implications for cancer immunotherapy.
    Pedersen SR; Sørensen MR; Buus S; Christensen JP; Thomsen AR
    J Immunol; 2013 Oct; 191(7):3955-67. PubMed ID: 24018273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.