BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25168775)

  • 1. Automated evaluation of physical therapy exercises using multi-template dynamic time warping on wearable sensor signals.
    Yurtman A; Barshan B
    Comput Methods Programs Biomed; 2014 Nov; 117(2):189-207. PubMed ID: 25168775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dynamic Time Warping Based Algorithm to Evaluate Kinect-Enabled Home-Based Physical Rehabilitation Exercises for Older People.
    Yu X; Xiong S
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and classification of postural transitions in real-world conditions.
    Ganea R; Paraschiv-lonescu A; Aminian K
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):688-96. PubMed ID: 22692942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis.
    Lin JF; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):168-80. PubMed ID: 23661321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Sensor Misplacement on Dynamic Time Warping Based Human Activity Recognition using Wearable Computers.
    Kale N; Lee J; Lotfian R; Jafari R
    Proc Wirel Health; 2012 Oct; 2012():. PubMed ID: 28345080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time human movement retrieval and assessment with Kinect sensor.
    Hu MC; Chen CW; Cheng WH; Chang CH; Lai JH; Wu JL
    IEEE Trans Cybern; 2015 Apr; 45(4):742-53. PubMed ID: 25069133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation.
    Tormene P; Giorgino T; Quaglini S; Stefanelli M
    Artif Intell Med; 2009 Jan; 45(1):11-34. PubMed ID: 19111449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective diagnosis of ADHD using IMUs.
    O'Mahony N; Florentino-Liano B; Carballo JJ; Baca-García E; Rodríguez AA
    Med Eng Phys; 2014 Jul; 36(7):922-6. PubMed ID: 24657100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera.
    Ar I; Akgul YS
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1160-71. PubMed ID: 24860037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.
    Ghose S; Mitra J; Karunanithi M; Dowling J
    Stud Health Technol Inform; 2015; 214():62-7. PubMed ID: 26210419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Humanoid assessing rehabilitative exercises.
    Simonov M; Delconte G
    Methods Inf Med; 2015; 54(2):114-21. PubMed ID: 24986076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hidden Semi-Markov Model based approach for rehabilitation exercise assessment.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Kyrki V; Monteriù A; Romeo L; Verdini F
    J Biomed Inform; 2018 Feb; 78():1-11. PubMed ID: 29277330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A real-time spike classification method based on dynamic time warping for extracellular enteric neural recording with large waveform variability.
    Cao Y; Rakhilin N; Gordon PH; Shen X; Kan EC
    J Neurosci Methods; 2016 Mar; 261():97-109. PubMed ID: 26719239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EMG-based handwriting recognition through dynamic time warping.
    Huang G; Zhang D; Zheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4902-5. PubMed ID: 21096658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification of a Portable Motion Tracking System for Remote Management of Physical Rehabilitation of the Knee.
    Bell KM; Onyeukwu C; McClincy MP; Allen M; Bechard L; Mukherjee A; Hartman RA; Smith C; Lynch AD; Irrgang JJ
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes.
    Hachaj T; Piekarczyk M; Ogiela MR
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29125560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From scores to face templates: a model-based approach.
    Mohanty P; Sarkar S; Kasturi R
    IEEE Trans Pattern Anal Mach Intell; 2007 Dec; 29(12):2065-78. PubMed ID: 17934218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation and evaluation of a multivariate abstraction-based, interval-based dynamic time-warping method as a similarity measure for longitudinal medical records.
    Lion M; Shahar Y
    J Biomed Inform; 2021 Nov; 123():103919. PubMed ID: 34628062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.