BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25168901)

  • 1. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells.
    Deng Y; Zhou H; Gu P; Fan X
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):6016-23. PubMed ID: 25168901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orbital wall repair in canines with beta-tricalcium phosphate and induced bone marrow stromal cells.
    Zhou H; Deng Y; Bi X; Xiao C; Wang Y; Sun J; Gu P; Fan X
    J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1340-9. PubMed ID: 23687075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair.
    Deng Y; Zhou H; Yan C; Wang Y; Xiao C; Gu P; Fan X
    Tissue Eng Part A; 2014 Jul; 20(13-14):2019-29. PubMed ID: 24498882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo efficacy of bone marrow stromal cells coated with beta-tricalcium phosphate for the reconstruction of orbital defects in canines.
    Zhou H; Xiao C; Wang Y; Bi X; Ge S; Fan X
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1735-41. PubMed ID: 21087968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of orbital wall defects using biocoral scaffolds combined with bone marrow stem cells enhanced by human bone morphogenetic protein-2 in a canine model.
    Xiao C; Zhou H; Ge S; Tang T; Hou H; Luo M; Fan X
    Int J Mol Med; 2010 Oct; 26(4):517-25. PubMed ID: 20818491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of orbital bone defects in canines using grafts of enriched autologous bone marrow stromal cells.
    Wang Y; Bi X; Zhou H; Deng Y; Sun J; Xiao C; Gu P; Fan X
    J Transl Med; 2014 May; 12():123. PubMed ID: 24886296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction of a mixture of β-tricalcium phosphate into a complex of bone marrow mesenchymal stem cells and type I collagen can augment the volume of alveolar bone without impairing cementum regeneration.
    Nagahara T; Yoshimatsu S; Shiba H; Kawaguchi H; Takeda K; Iwata T; Mizuno N; Fujita T; Kurihara H
    J Periodontol; 2015 Mar; 86(3):456-64. PubMed ID: 25494830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells.
    Dong Y; Chen X; Hong Y
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1300-6. PubMed ID: 23873227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats.
    Al-Hezaimi K; Ramalingam S; Al-Askar M; ArRejaie AS; Nooh N; Jawad F; Aldahmash A; Atteya M; Wang CY
    Int J Oral Sci; 2016 Mar; 8(1):7-15. PubMed ID: 27025260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects.
    Yang C; Liu X; Zhao K; Zhu Y; Hu B; Zhou Y; Wang M; Wu Y; Zhang C; Xu J; Ning Y; Zou D
    Stem Cell Res Ther; 2019 Feb; 10(1):65. PubMed ID: 30795815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate.
    Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y
    J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of serum-derived albumin scaffold and canine adipose tissue-derived mesenchymal stem cells on osteogenesis in canine segmental bone defect model.
    Yoon D; Kang BJ; Kim Y; Lee SH; Rhew D; Kim WH; Kweon OK
    J Vet Sci; 2015; 16(4):397-404. PubMed ID: 26119162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate.
    Yuan J; Cui L; Zhang WJ; Liu W; Cao Y
    Biomaterials; 2007 Feb; 28(6):1005-13. PubMed ID: 17092556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of TriCalcium Phosphate (TCP) and stem cells for the regeneration of osteoperiosteal critical-size mandibular bony defects, an in vitro and preclinical study.
    Alfotawei R; Naudi KB; Lappin D; Barbenel J; Di Silvio L; Hunter K; McMahon J; Ayoub A
    J Craniomaxillofac Surg; 2014 Sep; 42(6):863-9. PubMed ID: 24485270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-based therapy by implanted human bone marrow-derived mononuclear cells improved bone healing of large bone defects in rats.
    Seebach C; Henrich D; Schaible A; Relja B; Jugold M; Bönig H; Marzi I
    Tissue Eng Part A; 2015 May; 21(9-10):1565-78. PubMed ID: 25693739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration.
    Xie Q; Wang Z; Zhou H; Yu Z; Huang Y; Sun H; Bi X; Wang Y; Shi W; Gu P; Fan X
    Biomaterials; 2016 Jan; 75():279-294. PubMed ID: 26513420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining mesenchymal stem cell sheets with platelet-rich plasma gel/calcium phosphate particles: a novel strategy to promote bone regeneration.
    Qi Y; Niu L; Zhao T; Shi Z; Di T; Feng G; Li J; Huang Z
    Stem Cell Res Ther; 2015 Dec; 6():256. PubMed ID: 26689714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Massive bone reconstruction with heat-treated bone graft loaded autologous bone marrow-derived stromal cells and β-tricalcium phosphate composites in canine models.
    Koyanagi H; Ae K; Maehara H; Yuasa M; Masaoka T; Yamada T; Taniyama T; Saito M; Funauchi Y; Yoshii T; Okawa A; Sotome S
    J Orthop Res; 2013 Aug; 31(8):1308-16. PubMed ID: 23589164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.