These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25169050)

  • 1. Revealing cell assemblies at multiple levels of granularity.
    Billeh YN; Schaub MT; Anastassiou CA; Barahona M; Koch C
    J Neurosci Methods; 2014 Oct; 236():92-106. PubMed ID: 25169050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and analysis of non-Poisson stimulus-response models of neural spiking activity.
    Barbieri R; Quirk MC; Frank LM; Wilson MA; Brown EN
    J Neurosci Methods; 2001 Jan; 105(1):25-37. PubMed ID: 11166363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding visual information from a population of retinal ganglion cells.
    Warland DK; Reinagel P; Meister M
    J Neurophysiol; 1997 Nov; 78(5):2336-50. PubMed ID: 9356386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing the functional connectivity of multiple spike trains using Hawkes models.
    Lambert RC; Tuleau-Malot C; Bessaih T; Rivoirard V; Bouret Y; Leresche N; Reynaud-Bouret P
    J Neurosci Methods; 2018 Mar; 297():9-21. PubMed ID: 29294310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data.
    Florescu D; Coca D
    Neural Comput; 2018 Mar; 30(3):670-707. PubMed ID: 29342394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of hippocampal spatio-temporal representations using a Bayesian algorithm for neural spike train decoding.
    Barbieri R; Wilson MA; Frank LM; Brown EN
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):131-6. PubMed ID: 16003890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic analyses of information encoding in neural ensembles.
    Barbieri R; Frank LM; Nguyen DP; Quirk MC; Solo V; Wilson MA; Brown EN
    Neural Comput; 2004 Feb; 16(2):277-307. PubMed ID: 15006097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals.
    Moran A; Bar-Gad I
    J Neurosci Methods; 2010 Jan; 186(1):116-29. PubMed ID: 19900473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro validation of in silico identified inhibitory interactions.
    Liu H; Bridges D; Randall C; Solla SA; Wu B; Hansma P; Yan X; Kosik KS; Bouchard K
    J Neurosci Methods; 2019 Jun; 321():39-48. PubMed ID: 30965073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity.
    Okatan M; Wilson MA; Brown EN
    Neural Comput; 2005 Sep; 17(9):1927-61. PubMed ID: 15992486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike train SIMilarity Space (SSIMS): a framework for single neuron and ensemble data analysis.
    Vargas-Irwin CE; Brandman DM; Zimmermann JB; Donoghue JP; Black MJ
    Neural Comput; 2015 Jan; 27(1):1-31. PubMed ID: 25380335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions.
    Xu S; Li Y; Guo Q; Yang XF; Chan RHM
    J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unbiased and robust quantification of synchronization between spikes and local field potential.
    Li Z; Cui D; Li X
    J Neurosci Methods; 2016 Aug; 269():33-8. PubMed ID: 27180930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting cell assemblies in large neuronal populations.
    Lopes-dos-Santos V; Ribeiro S; Tort AB
    J Neurosci Methods; 2013 Nov; 220(2):149-66. PubMed ID: 23639919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural assemblies revealed by inferred connectivity-based models of prefrontal cortex recordings.
    Tavoni G; Cocco S; Monasson R
    J Comput Neurosci; 2016 Dec; 41(3):269-293. PubMed ID: 27469424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional network stability and average minimal distance - A framework to rapidly assess dynamics of functional network representations.
    Wu J; Skilling QM; Maruyama D; Li C; Ognjanovski N; Aton S; Zochowski M
    J Neurosci Methods; 2018 Feb; 296():69-83. PubMed ID: 29294309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.