These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25169071)

  • 1. Converting Ag₂S-CdS and Ag₂S-ZnS into Ag-CdS and Ag-ZnS nanoheterostructures by selective extraction of sulfur.
    Zhou J; Huang F; Xu J; Wang Y
    Chem Asian J; 2014 Nov; 9(11):3287-90. PubMed ID: 25169071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of CdS Nanorods and Deposition of Silver Nanoparticles.
    Zhao J; Yang F; Yang P
    J Nanosci Nanotechnol; 2015 May; 15(5):3928-33. PubMed ID: 26505026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Ag/Ag
    Chang YC; Lin YR
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General synthetic approach to heterostructured nanocrystals based on noble metals and I-VI, II-VI, and I-III-VI metal chalcogenides.
    Liu M; Zeng HC
    Langmuir; 2014 Aug; 30(32):9838-49. PubMed ID: 25072624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host.
    Zhu G; Xu Z
    J Am Chem Soc; 2011 Jan; 133(1):148-57. PubMed ID: 21141898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile one-step approach to obtaining uniform matchstick-like Ag2S-CdS nanoheterostructures.
    Huang Z; Zhong P; Li M; Tian F; Zhang C
    Nanotechnology; 2012 Aug; 23(33):335604. PubMed ID: 22863742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Facile Synthesis Routine of Ag2S-CdS Heterostructure Nanorods with Enhanced Trap Emissions.
    Zhao Y; Zhang Z; Sun D; Li G; Lan X; Jiang Y
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5087-92. PubMed ID: 26373084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-regulated route to ternary hybrid nanocrystals of Ag-Ag2S-CdS with near-infrared photoluminescence and enhanced photothermal conversion.
    Zhu G; Bao C; Liu Y; Shen X; Xi C; Xu Z; Ji Z
    Nanoscale; 2014 Oct; 6(19):11147-56. PubMed ID: 25212685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-phase catalytic synthesis, characterization and growth kinetics of Ag2S-CdS matchstick-like heteronanostructures.
    Wang J; Feng H; Chen K; Fan W; Yang Q
    Dalton Trans; 2014 Mar; 43(10):3990-8. PubMed ID: 24452178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Transfer-Mediated Blue Luminescence in Plasmonic Ag-Cu
    Ghose S; Singh S; Bhattacharya TS
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7727-7735. PubMed ID: 31950822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnS-CdS/graphene oxide heterostructures prepared by a light irradiation-assisted method for effective photocatalytic hydrogen generation.
    Wang X; Yuan B; Xie Z; Wang D; Zhang R
    J Colloid Interface Sci; 2015 May; 446():150-4. PubMed ID: 25666455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sandwich-like Cu(1.94)S-ZnS-Cu(1.94)S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior.
    Huang F; Xu J; Chen D; Wang Y
    Nanotechnology; 2012 Oct; 23(42):425604. PubMed ID: 23037778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon enhanced energy transfer in metal-semiconductor hybrid nanostructures.
    Zhao X; Wang P; Li B
    Nanoscale; 2011 Aug; 3(8):3056-9. PubMed ID: 21701747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes.
    Deka S; Quarta A; Lupo MG; Falqui A; Boninelli S; Giannini C; Morello G; De Giorgi M; Lanzani G; Spinella C; Cingolani R; Pellegrino T; Manna L
    J Am Chem Soc; 2009 Mar; 131(8):2948-58. PubMed ID: 19206236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.
    Sohrabnezhad Sh; Zanjanchi MA; Razavi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():129-35. PubMed ID: 24769384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.
    Shahjamali MM; Zhou Y; Zaraee N; Xue C; Wu J; Large N; McGuirk CM; Boey F; Dravid V; Cui Z; Schatz GC; Mirkin CA
    ACS Nano; 2016 May; 10(5):5362-73. PubMed ID: 27148792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CuGaS
    Zhao M; Huang F; Lin H; Zhou J; Xu J; Wu Q; Wang Y
    Nanoscale; 2016 Sep; 8(37):16670-16676. PubMed ID: 27714070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.