BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25169076)

  • 1. Evaluation of gellan gum fluid gels as modified release oral liquids.
    Mahdi MH; Conway BR; Smith AM
    Int J Pharm; 2014 Nov; 475(1-2):335-43. PubMed ID: 25169076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of mucoadhesive sprayable gellan gum fluid gels.
    Mahdi MH; Conway BR; Smith AM
    Int J Pharm; 2015 Jul; 488(1-2):12-9. PubMed ID: 25863119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gellan gum fluid gels for topical administration of diclofenac.
    Mahdi MH; Conway BR; Mills T; Smith AM
    Int J Pharm; 2016 Dec; 515(1-2):535-542. PubMed ID: 27789369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheology of sheared gels based on low acyl-gellan gum.
    García MC; Alfaro MC; Muñoz J
    Food Sci Technol Int; 2016 Jun; 22(4):325-32. PubMed ID: 26251462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and evaluation of gel formulations for oral sustained delivery to dysphagic patients.
    Miyazaki S; Takahashi A; Itoh K; Ishitani M; Dairaku M; Togashi M; Mikami R; Attwood D
    Drug Dev Ind Pharm; 2009 Jul; 35(7):780-7. PubMed ID: 19337871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation and Cost-Effectiveness of Fluid Gels as an Age-Appropriate Dosage Form for Older Adults with Dysphagia.
    Abd Aziz ZH; Katas H; Omar MS; Mohamed Shah N; Yusop SM
    Dysphagia; 2022 Aug; 37(4):1022-1034. PubMed ID: 34518932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and characteristics of gellan gum beads for modified release of meloxicam.
    Osmałek T; Milanowski B; Froelich A; Szybowicz M; Białowąs W; Kapela M; Gadziński P; Ancukiewicz K
    Drug Dev Ind Pharm; 2017 Aug; 43(8):1314-1329. PubMed ID: 28420283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of gellan gum on the thermogelation property and drug release profile of Poloxamer 407 based ophthalmic formulation.
    Dewan M; Sarkar G; Bhowmik M; Das B; Chattoapadhyay AK; Rana D; Chattopadhyay D
    Int J Biol Macromol; 2017 Sep; 102():258-265. PubMed ID: 28390828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of in situ gels as short term vitreous substitutes.
    Suri S; Banerjee R
    J Biomed Mater Res A; 2006 Dec; 79(3):650-64. PubMed ID: 16826595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gellan-based fluid gel carrier to enhance topical spray delivery.
    Ter Horst B; Moakes RJA; Chouhan G; Williams RL; Moiemen NS; Grover LM
    Acta Biomater; 2019 Apr; 89():166-179. PubMed ID: 30904549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-Carnosine: multifunctional dipeptide buffer for sustained-duration topical ophthalmic formulations.
    Singh SR; Carreiro ST; Chu J; Prasanna G; Niesman MR; Collette Iii WW; Younis HS; Sartnurak S; Gukasyan HJ
    J Pharm Pharmacol; 2009 Jun; 61(6):733-42. PubMed ID: 19505363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of charge density of polysaccharides on self-assembled intragastric gelation of whey protein/polysaccharide under simulated gastric conditions.
    Zhang S; Zhang Z; Vardhanabhuti B
    Food Funct; 2014 Aug; 5(8):1829-38. PubMed ID: 24920131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An insight into the emerging exopolysaccharide gellan gum as a novel polymer.
    Prajapati VD; Jani GK; Zala BS; Khutliwala TA
    Carbohydr Polym; 2013 Apr; 93(2):670-8. PubMed ID: 23499110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of thermally stable emulsion gels based on Glucono-δ-lactone induced gelation of gellan gum.
    Li A; Gong T; Li X; Li X; Yang X; Guo Y
    Int J Biol Macromol; 2020 Aug; 156():565-575. PubMed ID: 32311401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpenetrating network gels with tunable physical properties: Glucono-δ-lactone induced gelation of mixed Alg/gellan sol systems.
    Li A; Gong T; Yang X; Guo Y
    Int J Biol Macromol; 2020 May; 151():257-267. PubMed ID: 32057870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ-gelling gellan formulations as vehicles for oral drug delivery.
    Miyazaki S; Aoyama H; Kawasaki N; Kubo W; Attwood D
    J Control Release; 1999 Aug; 60(2-3):287-95. PubMed ID: 10425334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation development of ambroxol hydrochloride soft gel with application of statistical experimental design and response surface methodology.
    Dabhi M; Gohel M; Parikh R; Sheth N; Nagori S
    PDA J Pharm Sci Technol; 2011; 65(1):20-31. PubMed ID: 21414937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheo-dissolution: A new platform for the simultaneous measurement of rheology and drug release.
    Senjoti FG; Ghori MU; Diryak R; Conway BR; Morris GA; Smith AM
    Carbohydr Polym; 2020 Feb; 229():115541. PubMed ID: 31826516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of ion-activated in situ gel systems of scopolamine hydrobromide and evaluation of its antimotion sickness efficacy.
    Cao SL; Zhang QZ; Jiang XG
    Acta Pharmacol Sin; 2007 Apr; 28(4):584-90. PubMed ID: 17376300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation.
    Galgatte UC; Kumbhar AB; Chaudhari PD
    Drug Deliv; 2014 Feb; 21(1):62-73. PubMed ID: 24191774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.