These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25169625)

  • 1. Remarkable enhancement of O₂ activation on yttrium-stabilized zirconia surface in a dual catalyst bed.
    Richard M; Can F; Duprez D; Gil S; Giroir-Fendler A; Bion N
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11342-5. PubMed ID: 25169625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Methane Oxidation Reactions Over a Dual-Bed Catalyst System using
    Richard M; Duprez D; Bion N; Can F
    ChemSusChem; 2017 Jan; 10(1):210-219. PubMed ID: 27860373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of surface defects in activation of O2 and N2O on ZrO2 and yttrium-stabilized ZrO2.
    Zhu J; Albertsma S; van Ommen JG; Lefferts L
    J Phys Chem B; 2005 May; 109(19):9550-5. PubMed ID: 16852149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Bi
    Liu S; Zhang J; Tian Y; Sun J; Huang P; Li J; Han G
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia.
    van Duin AC; Merinov BV; Jang SS; Goddard WA
    J Phys Chem A; 2008 Apr; 112(14):3133-40. PubMed ID: 18348544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic structure and composition of the yttria-stabilized zirconia (111) surface.
    Vonk V; Khorshidi N; Stierle A; Dosch H
    Surf Sci; 2013 Jun; 612(100):69-76. PubMed ID: 23734067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced oxygen exchange on surface-engineered yttria-stabilized zirconia.
    Chao CC; Park JS; Tian X; Shim JH; Gür TM; Prinz FB
    ACS Nano; 2013 Mar; 7(3):2186-91. PubMed ID: 23397972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Formation of Er
    He S; Zhang Q; Maurizio G; Catellani L; Chen K; Chang Q; Santarelli M; Jiang SP
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40549-40559. PubMed ID: 30394736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial oxidation of ultrathin nickel and chromium films on yttria-stabilized zirconia.
    Khyzhun O; Sygellou L; Ladas S
    J Phys Chem B; 2005 Feb; 109(6):2302-6. PubMed ID: 16851223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrochemical promotion of ethylene oxidation at a Pt/YSZ catalyst.
    Toghan A; Rösken LM; Imbihl R
    Chemphyschem; 2010 May; 11(7):1452-9. PubMed ID: 20183846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of H(2) oxidation at sulphur-exposed Ni surfaces under low temperature SOFC conditions.
    Deleebeeck L; Shishkin M; Addo P; Paulson S; Molero H; Ziegler T; Birss V
    Phys Chem Chem Phys; 2014 May; 16(20):9383-93. PubMed ID: 24718381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel yttrium stabilized zirconia and ceria composite electrolyte lowering solid oxide fuel cells working temperature to 400 °C.
    Liu Y; Zuo L; Ye Y; Jiang C; Zheng D; Liu C; Wang B; Wang X
    RSC Adv; 2023 Nov; 13(47):33430-33436. PubMed ID: 38025855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of oxygen spillover for fuel oxidation on Ni/YSZ anodes in solid oxide fuel cells.
    Fu Z; Wang M; Zuo P; Yang Z; Wu R
    Phys Chem Chem Phys; 2014 May; 16(18):8536-40. PubMed ID: 24671516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operando X-ray Investigation of Electrode/Electrolyte Interfaces in Model Solid Oxide Fuel Cells.
    Volkov S; Vonk V; Khorshidi N; Franz D; Kubicek M; Kilic V; Felici R; Huber TM; Navickas E; Rupp GM; Fleig J; Stierle A
    Chem Mater; 2016 Jun; 28(11):3727-3733. PubMed ID: 27346923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure tailoring of the nickel oxide-Yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells.
    Liu T; Ren C; Fang S; Wang Y; Chen F
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18853-60. PubMed ID: 25313919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co
    Shahid M; He C; Sankarasubramanian S; Ramani VK; Basu S
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32578-32590. PubMed ID: 32589004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of interlayer on structure and performance of anode-supported SOFC single cells.
    Eom TW; Yang HK; Kim KH; Yoon HH; Kim JS; Park SJ
    Ultramicroscopy; 2008 Sep; 108(10):1283-7. PubMed ID: 18571861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface modification of La(0.8)Sr(0.2)CrO(3-δ)-YSZ dual-phase membranes for syngas production.
    Yu AS; Oh TS; Zhu R; Gallegos A; Gorte RJ; Vohs JM
    Faraday Discuss; 2015; 182():213-25. PubMed ID: 26211722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.