BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25169660)

  • 1. Enhanced global mathematical model for studying cerebral venous blood flow.
    Müller LO; Toro EF
    J Biomech; 2014 Oct; 47(13):3361-72. PubMed ID: 25169660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of CCSVI on cerebral haemodynamics: a mathematical study using MRI angiographic and flow data.
    Müller LO; Toro EF; Haacke EM; Utriainen D
    Phlebology; 2016 Jun; 31(5):305-24. PubMed ID: 26036249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension.
    DE Simone R; Ranieri A; Bonavita V
    Panminerva Med; 2017 Mar; 59(1):76-89. PubMed ID: 27598891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Jugular Vein Valve Function on Cerebral Venous Haemodynamics.
    Toro EF; Muller LO; Cristini M; Menegatti E; Zamboni P
    Curr Neurovasc Res; 2015; 12(4):384-97. PubMed ID: 26256005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral venous steal: blood flow diversion with increased tissue pressure.
    Pranevicius M; Pranevicius O
    Neurosurgery; 2002 Nov; 51(5):1267-73; discussion 1273-4. PubMed ID: 12383372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral venous blood outflow: a theoretical model based on laboratory simulation.
    Piechnik SK; Czosnyka M; Richards HK; Whitfield PC; Pickard JD
    Neurosurgery; 2001 Nov; 49(5):1214-22; discussion 1222-3. PubMed ID: 11846915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new hemodynamic model for the study of cerebral venous outflow.
    Gadda G; Taibi A; Sisini F; Gambaccini M; Zamboni P; Ursino M
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H217-31. PubMed ID: 25398980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simulation model to study the role of the extracranial venous drainage pathways in intracranial hemodynamics.
    Gadda G; Taibi A; Sisini F; Gambaccini M; Sethi SK; Utriainen D; Haacke EM; Zamboni P; Ursino M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7800-3. PubMed ID: 26738101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cerebral venous system and the postural regulation of intracranial pressure: implications in the management of patients with cerebrospinal fluid diversion.
    Barami K; Sood S
    Childs Nerv Syst; 2016 Apr; 32(4):599-607. PubMed ID: 26767844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension.
    Chen J; Wang XM; Luan LM; Chao BT; Pang B; Song H; Pang Q
    Chin Med J (Engl); 2012 Apr; 125(7):1303-9. PubMed ID: 22613606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute subdural hematoma from bridging vein rupture: a potential mechanism for growth.
    Miller JD; Nader R
    J Neurosurg; 2014 Jun; 120(6):1378-84. PubMed ID: 24313607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Starling resistor regulates cerebral venous outflow in dogs.
    Luce JM; Huseby JS; Kirk W; Butler J
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1496-1503. PubMed ID: 6759493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-structure Interaction in the Cerebral Venous Transverse Sinus.
    Shim EB; Heldt T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4544-4547. PubMed ID: 30441362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cerebral venous hemodynamics in chronic disorders of cerebral circulation].
    Todua FI; Gachechiladze DG; Beraia MV; Berulava DV
    Angiol Sosud Khir; 2005; 11(2):39-43. PubMed ID: 16037801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of short-term exposure to head-down tilt on cerebral hemodynamics: a prospective evaluation of a spaceflight analog using phase-contrast MRI.
    Marshall-Goebel K; Ambarki K; Eklund A; Malm J; Mulder E; Gerlach D; Bershad E; Rittweger J
    J Appl Physiol (1985); 2016 Jun; 120(12):1466-73. PubMed ID: 27013606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational haemodynamics in stenotic internal jugular veins.
    Caiazzo A; Montecinos G; Müller LO; Haacke EM; Toro EF
    J Math Biol; 2015 Mar; 70(4):745-72. PubMed ID: 24671429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does thoracic pump influence the cerebral venous return?
    Zamboni P; Menegatti E; Pomidori L; Morovic S; Taibi A; Malagoni AM; Cogo AL; Gambaccini M
    J Appl Physiol (1985); 2012 Mar; 112(5):904-10. PubMed ID: 22174396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute Cerebral Venous Thrombosis: Three-Dimensional Visualization and Quantification of Hemodynamic Alterations Using 4-Dimensional Flow Magnetic Resonance Imaging.
    Schuchardt F; Hennemuth A; Schroeder L; Meckel S; Markl M; Wehrum T; Harloff A
    Stroke; 2017 Mar; 48(3):671-677. PubMed ID: 28179559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.