BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 25169726)

  • 1. Superficially porous particles vs. fully porous particles for bonded high performance liquid chromatographic chiral stationary phases: isopropyl cyclofructan 6.
    Spudeit DA; Dolzan MD; Breitbach ZS; Barber WE; Micke GA; Armstrong DW
    J Chromatogr A; 2014 Oct; 1363():89-95. PubMed ID: 25169726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles.
    Roy D; Armstrong DW
    J Chromatogr A; 2019 Nov; 1605():360339. PubMed ID: 31350029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of superficially porous and fully porous silica supports used for a cyclofructan 6 hydrophilic interaction liquid chromatographic stationary phase.
    Dolzan MD; Spudeit DA; Breitbach ZS; Barber WE; Micke GA; Armstrong DW
    J Chromatogr A; 2014 Oct; 1365():124-30. PubMed ID: 25260342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography.
    Bezhitashvili L; Bardavelidze A; Ordjonikidze T; Chankvetadze L; Chity M; Farkas T; Chankvetadze B
    J Chromatogr A; 2017 Jan; 1482():32-38. PubMed ID: 28049582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superficially Porous Particle Based Hydroxypropyl-β-cyclodextrin Stationary Phase for High-Efficiency Enantiomeric Separations.
    Spudeit DA; Breitbach ZS; Dolzan MD; Micke GA; Armstrong DW
    Chirality; 2015 Nov; 27(11):788-94. PubMed ID: 26377753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography.
    Kharaishvili Q; Jibuti G; Farkas T; Chankvetadze B
    J Chromatogr A; 2016 Oct; 1467():163-168. PubMed ID: 27567142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of superficially porous particle based zwitterionic chiral ion exchangers against fully porous particle benchmarks for enantioselective ultra-high performance liquid chromatography.
    Geibel C; Dittrich K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2019 Oct; 1603():130-140. PubMed ID: 31235330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative high-performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core-shell silica particles.
    Lomsadze K; Jibuti G; Farkas T; Chankvetadze B
    J Chromatogr A; 2012 Apr; 1234():50-5. PubMed ID: 22349144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future perspectives in high efficient and ultrafast chiral liquid chromatography through zwitterionic teicoplanin-based 2-μm superficially porous particles.
    Ismail OH; Antonelli M; Ciogli A; Villani C; Cavazzini A; Catani M; Felletti S; Bell DS; Gasparrini F
    J Chromatogr A; 2017 Oct; 1520():91-102. PubMed ID: 28911942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography.
    Patel DC; Breitbach ZS; Yu J; Nguyen KA; Armstrong DW
    Anal Chim Acta; 2017 Apr; 963():164-174. PubMed ID: 28335970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pirkle-type chiral stationary phase on core-shell and fully porous particles: Are superficially porous particles always the better choice toward ultrafast high-performance enantioseparations?
    Ismail OH; Pasti L; Ciogli A; Villani C; Kocergin J; Anderson S; Gasparrini F; Cavazzini A; Catani M
    J Chromatogr A; 2016 Sep; 1466():96-104. PubMed ID: 27614732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantiomeric separations of α-aryl ketones with cyclofructan chiral stationary phases via high performance liquid chromatography and supercritical fluid chromatography.
    Breitbach AS; Lim Y; Xu QL; Kürti L; Armstrong DW; Breitbach ZS
    J Chromatogr A; 2016 Jan; 1427():45-54. PubMed ID: 26687164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantiomeric separations of illicit drugs and controlled substances using cyclofructan-based (LARIHC) and cyclobond I 2000 RSP HPLC chiral stationary phases.
    Padivitage NL; Dodbiba E; Breitbach ZS; Armstrong DW
    Drug Test Anal; 2014 Jun; 6(6):542-51. PubMed ID: 24115758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective methodologies for enantiomeric separations of 150 pharmacology and toxicology related 1°, 2°, and 3° amines with core-shell chiral stationary phases.
    Hellinghausen G; Roy D; Lee JT; Wang Y; Weatherly CA; Lopez DA; Nguyen KA; Armstrong JD; Armstrong DW
    J Pharm Biomed Anal; 2018 Jun; 155():70-81. PubMed ID: 29625259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantiomeric separations of ruthenium (II) polypyridyl complexes using HPLC with cyclofructan chiral stationary phases.
    Shu Y; Breitbach ZS; Dissanayake MK; Perera S; Aslan JM; Alatrash N; MacDonnell FM; Armstrong DW
    Chirality; 2015 Jan; 27(1):64-70. PubMed ID: 25288031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of cyclofructan-, cyclodextrin-, and polysaccharide-based chiral stationary phases for the separation of pharmaceuticals.
    Agathokleous EA; Stavrou IJ; Kapnissi-Christodoulou C
    Anal Bioanal Chem; 2022 Jan; 414(3):1323-1333. PubMed ID: 34779900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential and current limitations of superficially porous silica as a carrier for polysaccharide-based chiral selectors in separation of enantiomers in high-performance liquid chromatography.
    Pantsulaia S; Targamadze K; Khundadze N; Kharaishvili Q; Volonterio A; Chitty M; Farkas T; Chankvetadze B
    J Chromatogr A; 2020 Aug; 1625():461297. PubMed ID: 32709340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance liquid chromatographic enantioseparation of amino compounds on newly developed cyclofructan-based chiral stationary phases.
    Aranyi A; Bagi Á; Ilisz I; Pataj Z; Fülöp F; Armstrong DW; Péter A
    J Sep Sci; 2012 Mar; 35(5-6):617-24. PubMed ID: 22331836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective ultra-high and high performance liquid chromatography: a comparative study of columns based on the Whelk-O1 selector.
    Kotoni D; Ciogli A; D'Acquarica I; Kocergin J; Szczerba T; Ritchie H; Villani C; Gasparrini F
    J Chromatogr A; 2012 Dec; 1269():226-41. PubMed ID: 23040980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.