These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25170342)

  • 1. Glassy Interfacial Dynamics of Ni Nanoparticles: Part I Colored Noise, Dynamic Heterogeneity and Collective Atomic Motion.
    Zhang H; Douglas JF
    Soft Matter; 2013 Jan; 9(4):1254-1265. PubMed ID: 25170342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glassy Interfacial Dynamics of Ni Nanoparticles: Part II Discrete Breathers as an Explanation of Two-Level Energy Fluctuations.
    Zhang H; Douglas JF
    Soft Matter; 2013 Jan; 9(4):1266-1280. PubMed ID: 23585770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. String-like collective motion and diffusion in the interfacial region of ice.
    Wang X; Tong X; Zhang H; Douglas JF
    J Chem Phys; 2017 Nov; 147(19):194508. PubMed ID: 29166091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles.
    Haddadian EJ; Zhang H; Freed KF; Douglas JF
    Sci Rep; 2017 Feb; 7():41671. PubMed ID: 28176808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni.
    Zhang H; Yang Y; Douglas JF
    J Chem Phys; 2015 Feb; 142(8):084704. PubMed ID: 25725748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and nature of spontaneous shape fluctuations in "small" nanoparticles.
    Yang Y; Zhang H; Douglas JF
    ACS Nano; 2014 Jul; 8(7):7465-77. PubMed ID: 24992502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys.
    Zhang H; Zhong C; Douglas JF; Wang X; Cao Q; Zhang D; Jiang JZ
    J Chem Phys; 2015 Apr; 142(16):164506. PubMed ID: 25933773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. String-like cooperative motion in homogeneous melting.
    Zhang H; Khalkhali M; Liu Q; Douglas JF
    J Chem Phys; 2013 Mar; 138(12):12A538. PubMed ID: 23556789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films.
    Hanakata PZ; Douglas JF; Starr FW
    Nat Commun; 2014 Jun; 5():4163. PubMed ID: 24932594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt.
    Pazmiño Betancourt BA; Starr FW; Douglas JF
    J Chem Phys; 2018 Mar; 148(10):104508. PubMed ID: 29544276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation free energy gradient controls interfacial mobility gradient in thin polymer films.
    Zhang W; Starr FW; Douglas JF
    J Chem Phys; 2021 Nov; 155(17):174901. PubMed ID: 34742183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization model description of the interfacial dynamics of crystalline Cu and [Formula: see text] metallic glass nanoparticles.
    Mahmud G; Zhang H; Douglas JF
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):33. PubMed ID: 33728521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics study on structural and atomic evolution between Au and Ni nanoparticles through coalescence.
    Li B; Li J; Su X; Cui Y
    Sci Rep; 2021 Jul; 11(1):15432. PubMed ID: 34326385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamics of metal nanoparticles on a supporting interacting substrate.
    Mahmud G; Zhang H; Douglas JF
    J Chem Phys; 2022 Sep; 157(11):114505. PubMed ID: 36137784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic heterogeneity and collective motion in star polymer melts.
    Fan J; Emamy H; Chremos A; Douglas JF; Starr FW
    J Chem Phys; 2020 Feb; 152(5):054904. PubMed ID: 32035474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confined glassy dynamics at grain boundaries in colloidal crystals.
    Nagamanasa KH; Gokhale S; Ganapathy R; Sood AK
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11323-6. PubMed ID: 21705662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.