These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 25170520)
1. Voice activity detection in noisy environments based on double-combined fourier transform and line fitting. Park J; Kim W; Han DK; Ko H ScientificWorldJournal; 2014; 2014():146040. PubMed ID: 25170520 [TBL] [Abstract][Full Text] [Related]
3. A hierarchical framework approach for voice activity detection and speech enhancement. Zhang Y; Tang ZM; Li YP; Luo Y ScientificWorldJournal; 2014; 2014():723643. PubMed ID: 24959621 [TBL] [Abstract][Full Text] [Related]
4. A novel voice sensor for the detection of speech signals. Wang KC Sensors (Basel); 2013 Dec; 13(12):16533-50. PubMed ID: 24316566 [TBL] [Abstract][Full Text] [Related]
5. Ambulatory Phonation Monitoring With Wireless Microphones Based on the Speech Energy Envelope: Algorithm Development and Validation. Wang CT; Han JY; Fang SH; Lai YH JMIR Mhealth Uhealth; 2020 Dec; 8(12):e16746. PubMed ID: 33270033 [TBL] [Abstract][Full Text] [Related]
6. Robustness of auditory Teager Energy Cepstrum Coefficients for classification of pathological and normal voices in noisy environments. Salhi L; Cherif A ScientificWorldJournal; 2013; 2013():435729. PubMed ID: 23818821 [TBL] [Abstract][Full Text] [Related]
7. An effective cluster-based model for robust speech detection and speech recognition in noisy environments. Górriz JM; Ramírez J; Segura JC; Puntonet CG J Acoust Soc Am; 2006 Jul; 120(1):470-81. PubMed ID: 16875243 [TBL] [Abstract][Full Text] [Related]
8. A spectral/temporal method for robust fundamental frequency tracking. Zahorian SA; Hu H J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404 [TBL] [Abstract][Full Text] [Related]
9. A subspace approach based on embedded prewhitening for voice activity detection. Kim DK; Chang JH J Acoust Soc Am; 2011 Nov; 130(5):EL304-10. PubMed ID: 22088032 [TBL] [Abstract][Full Text] [Related]
10. Noise-robust speech recognition through auditory feature detection and spike sequence decoding. Schafer PB; Jin DZ Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849 [TBL] [Abstract][Full Text] [Related]
11. Detection of the closure-burst transitions of stops and affricates in continuous speech using the plosion index. Ananthapadmanabha TV; Prathosh AP; Ramakrishnan AG J Acoust Soc Am; 2014 Jan; 135(1):460-71. PubMed ID: 24437786 [TBL] [Abstract][Full Text] [Related]
12. Impulse-noise suppression in speech using the stationary wavelet transform. Nongpiur RC; Shpak DJ J Acoust Soc Am; 2013 Feb; 133(2):866-79. PubMed ID: 23363105 [TBL] [Abstract][Full Text] [Related]
13. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model. Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263 [TBL] [Abstract][Full Text] [Related]
14. Wavelet speech enhancement algorithm using exponential semi-soft mask filtering. Lee G; Dae Na S; Seong K; Cho JH; Nam Kim M Bioengineered; 2016 Sep; 7(5):352-356. PubMed ID: 27436063 [TBL] [Abstract][Full Text] [Related]
15. Signal-to-noise ratio adaptive post-filtering method for intelligibility enhancement of telephone speech. Jokinen E; Yrttiaho S; Pulakka H; Vainio M; Alku P J Acoust Soc Am; 2012 Dec; 132(6):3990-4001. PubMed ID: 23231128 [TBL] [Abstract][Full Text] [Related]
16. Wearable Hearing Device Spectral Enhancement Driven by Non-Negative Sparse Coding-Based Residual Noise Reduction. Kim SM Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050447 [TBL] [Abstract][Full Text] [Related]
17. Speech endpoint detection based on speech time-frequency enhancement and spectral entropy. Yingle F; Yi L; Chuanyan W Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4682-4. PubMed ID: 17281285 [TBL] [Abstract][Full Text] [Related]
18. Efficient Modeling of Acoustic Feedback Path in Hearing Aids by Voice Activity Detector-Supervised Multiple Noise Injections. Mishra P; Tokgoz S; Panahi IMS Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3549-3552. PubMed ID: 30441145 [TBL] [Abstract][Full Text] [Related]
19. Dynamic formant tracking of noisy speech using temporal analysis on outputs from a nonlinear cochlear model. Deng L; Kheirallah I IEEE Trans Biomed Eng; 1993 May; 40(5):456-67. PubMed ID: 8225334 [TBL] [Abstract][Full Text] [Related]