BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25170569)

  • 1. 3D Viscoelastic traction force microscopy.
    Toyjanova J; Hannen E; Bar-Kochba E; Darling EM; Henann DL; Franck C
    Soft Matter; 2014 Oct; 10(40):8095-106. PubMed ID: 25170569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis.
    Barrasa-Fano J; Shapeti A; de Jong J; Ranga A; Sanz-Herrera JA; Van Oosterwyck H
    Acta Biomater; 2021 May; 126():326-338. PubMed ID: 33737201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution, large deformation 3D traction force microscopy.
    Toyjanova J; Bar-Kochba E; López-Fagundo C; Reichner J; Hoffman-Kim D; Franck C
    PLoS One; 2014; 9(4):e90976. PubMed ID: 24740435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Soft Matter; 2019 Feb; 15(8):1721-1729. PubMed ID: 30657157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.
    Hong X; Stegemann JP; Deng CX
    Biomaterials; 2016 May; 88():12-24. PubMed ID: 26928595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation and evaluation of 3D traction force microscopy.
    Holenstein CN; Lendi CR; Wili N; Snedeker JG
    Comput Methods Biomech Biomed Engin; 2019 Jun; 22(8):853-860. PubMed ID: 30963777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-Layer Elastographic 3-D Traction Force Microscopy.
    Álvarez-González B; Zhang S; Gómez-González M; Meili R; Firtel RA; Lasheras JC; Del Álamo JC
    Sci Rep; 2017 Jan; 7():39315. PubMed ID: 28074837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of Tractions Exerted by Single Cells in Three-Dimensional Nonlinear Matrices.
    Song D; Dong L; Gupta M; Li L; Klaas O; Loghin A; Beall M; Chen CS; Oberai AA
    J Biomech Eng; 2020 Aug; 142(8):. PubMed ID: 32320015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epifluorescence-based three-dimensional traction force microscopy.
    Hazlett L; Landauer AK; Patel M; Witt HA; Yang J; Reichner JS; Franck C
    Sci Rep; 2020 Oct; 10(1):16599. PubMed ID: 33024138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.
    Nam S; Hu KH; Butte MJ; Chaudhuri O
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5492-7. PubMed ID: 27140623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Cell Adhesion using Hydrogel Patterning Techniques for Applications in Traction Force Microscopy.
    Christian J; Blumberg JW; Probst D; Lo Giudice C; Sindt S; Selhuber-Unkel C; Schwarz US; Cavalcanti-Adam EA
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35156655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative reconstruction of time-varying 3D cell forces with traction force optical coherence microscopy.
    Mulligan JA; Feng X; Adie SG
    Sci Rep; 2019 Mar; 9(1):4086. PubMed ID: 30858424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Green's function for three-dimensional traction force reconstruction based on geometry and boundary conditions of cell culture matrices.
    Du Y; Herath SCB; Wang QG; Asada H; Chen PCY
    Acta Biomater; 2018 Feb; 67():215-228. PubMed ID: 29242157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2.5D Traction Force Microscopy: Imaging three-dimensional cell forces at interfaces and biological applications.
    Delanoë-Ayari H; Hiraiwa T; Marcq P; Rieu JP; Saw TB
    Int J Biochem Cell Biol; 2023 Aug; 161():106432. PubMed ID: 37290687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse method based on 3D nonlinear physically constrained minimisation in the framework of traction force microscopy.
    Sanz-Herrera JA; Barrasa-Fano J; Cóndor M; Van Oosterwyck H
    Soft Matter; 2021 Nov; 17(45):10210-10222. PubMed ID: 33165455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free Form Deformation-Based Image Registration Improves Accuracy of Traction Force Microscopy.
    Jorge-Peñas A; Izquierdo-Alvarez A; Aguilar-Cuenca R; Vicente-Manzanares M; Garcia-Aznar JM; Van Oosterwyck H; de-Juan-Pardo EM; Ortiz-de-Solorzano C; Muñoz-Barrutia A
    PLoS One; 2015; 10(12):e0144184. PubMed ID: 26641883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy.
    Chim YH; Mason LM; Rath N; Olson MF; Tassieri M; Yin H
    Sci Rep; 2018 Sep; 8(1):14462. PubMed ID: 30262873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimode ultrasound viscoelastography for three-dimensional interrogation of microscale mechanical properties in heterogeneous biomaterials.
    Hong X; Annamalai RT; Kemerer TS; Deng CX; Stegemann JP
    Biomaterials; 2018 Sep; 178():11-22. PubMed ID: 29902533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward single cell traction microscopy within 3D collagen matrices.
    Hall MS; Long R; Feng X; Huang Y; Hui CY; Wu M
    Exp Cell Res; 2013 Oct; 319(16):2396-408. PubMed ID: 23806281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring viscoelasticity of soft biological samples using atomic force microscopy.
    Efremov YM; Okajima T; Raman A
    Soft Matter; 2020 Jan; 16(1):64-81. PubMed ID: 31720656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.