These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25170791)

  • 1. Cognitive control predicts use of model-based reinforcement learning.
    Otto AR; Skatova A; Madlon-Kay S; Daw ND
    J Cogn Neurosci; 2015 Feb; 27(2):319-33. PubMed ID: 25170791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working-memory capacity protects model-based learning from stress.
    Otto AR; Raio CM; Chiang A; Phelps EA; Daw ND
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):20941-6. PubMed ID: 24324166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.
    Zendehrouh S
    Neural Netw; 2015 Nov; 71():112-23. PubMed ID: 26339919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigating complex decision spaces: Problems and paradigms in sequential choice.
    Walsh MM; Anderson JR
    Psychol Bull; 2014 Mar; 140(2):466-86. PubMed ID: 23834192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive.
    Otto AR; Gershman SJ; Markman AB; Daw ND
    Psychol Sci; 2013 May; 24(5):751-61. PubMed ID: 23558545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-Free and Model-Based Influences in Addiction-Related Behaviors.
    Groman SM; Massi B; Mathias SR; Lee D; Taylor JR
    Biol Psychiatry; 2019 Jun; 85(11):936-945. PubMed ID: 30737015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Index of Reinforcement Learning Predicts Improved Stimulus-Response Retention under High Working Memory Load.
    Rac-Lubashevsky R; Cremer A; Collins AGE; Frank MJ; Schwabe L
    J Neurosci; 2023 Apr; 43(17):3131-3143. PubMed ID: 36931706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-Based Reasoning in Humans Becomes Automatic with Training.
    Economides M; Kurth-Nelson Z; Lübbert A; Guitart-Masip M; Dolan RJ
    PLoS Comput Biol; 2015 Sep; 11(9):e1004463. PubMed ID: 26379239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based learning protects against forming habits.
    Gillan CM; Otto AR; Phelps EA; Daw ND
    Cogn Affect Behav Neurosci; 2015 Sep; 15(3):523-36. PubMed ID: 25801925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning.
    Schad DJ; Jünger E; Sebold M; Garbusow M; Bernhardt N; Javadi AH; Zimmermann US; Smolka MN; Heinz A; Rapp MA; Huys QJ
    Front Psychol; 2014; 5():1450. PubMed ID: 25566131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contextual control of choice performance: behavioral, neurobiological, and neurochemical influences.
    Haddon JE; Killcross S
    Ann N Y Acad Sci; 2007 May; 1104():250-69. PubMed ID: 17344528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new model of decision processing in instrumental learning tasks.
    Miletić S; Boag RJ; Trutti AC; Stevenson N; Forstmann BU; Heathcote A
    Elife; 2021 Jan; 10():. PubMed ID: 33501916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actions, action sequences and habits: evidence that goal-directed and habitual action control are hierarchically organized.
    Dezfouli A; Balleine BW
    PLoS Comput Biol; 2013; 9(12):e1003364. PubMed ID: 24339762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning.
    Decker JH; Otto AR; Daw ND; Hartley CA
    Psychol Sci; 2016 Jun; 27(6):848-58. PubMed ID: 27084852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutual benefits: Combining reinforcement learning with sequential sampling models.
    Miletić S; Boag RJ; Forstmann BU
    Neuropsychologia; 2020 Jan; 136():107261. PubMed ID: 31733237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis.
    Collins AG; Frank MJ
    Eur J Neurosci; 2012 Apr; 35(7):1024-35. PubMed ID: 22487033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Habits without values.
    Miller KJ; Shenhav A; Ludvig EA
    Psychol Rev; 2019 Mar; 126(2):292-311. PubMed ID: 30676040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Choice Strategy Varies with Anatomical Projections from Ventromedial Prefrontal Cortex to Medial Striatum.
    Piray P; Toni I; Cools R
    J Neurosci; 2016 Mar; 36(10):2857-67. PubMed ID: 26961942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of choice-induced preference change: A Reinforcement-Learning-based approach.
    Zhu J; Hashimoto J; Katahira K; Hirakawa M; Nakao T
    PLoS One; 2021; 16(1):e0244434. PubMed ID: 33411720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.