These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47 related articles for article (PubMed ID: 25170821)
1. Correlation between leucine rich domain and the stability of LRWD1 protein in human NT2/D1 cells. Tsai YC; Teng YN; Hung JH; Wu CH; Kuo YT; Kuo PL; Chiu CC; Huang B Adv Med Sci; 2014 Sep; 59(2):266-72. PubMed ID: 25170821 [TBL] [Abstract][Full Text] [Related]
2. LRWD1 Regulates Microtubule Nucleation and Proper Cell Cycle Progression in the Human Testicular Embryonic Carcinoma Cells. Wang CY; Hong YH; Syu JS; Tsai YC; Liu XY; Chen TY; Su YM; Kuo PL; Lin YM; Teng YN J Cell Biochem; 2018 Jan; 119(1):314-326. PubMed ID: 28569402 [TBL] [Abstract][Full Text] [Related]
3. Expression of lrwd1 in mouse testis and its centrosomal localization. Teng YN; Liao MH; Lin YB; Kuo PL; Kuo TY Int J Androl; 2010 Dec; 33(6):832-40. PubMed ID: 20180869 [TBL] [Abstract][Full Text] [Related]
4. Nuclear factor-κB (NF-κB) regulates the expression of human testis-enriched Leucine-rich repeats and WD repeat domain containing 1 (LRWD1) gene. Teng YN; Chuang PJ; Liu YW Int J Mol Sci; 2012 Dec; 14(1):625-39. PubMed ID: 23275029 [TBL] [Abstract][Full Text] [Related]
5. Nuclear factor erythroid-2-related factor regulates LRWD1 expression and cellular adaptation to oxidative stress in human embryonal carcinoma cells. Hung JH; Wee SK; Omar HA; Su CH; Chen HY; Chen PS; Chiu CC; Wu MS; Teng YN Biochimie; 2018 May; 148():99-106. PubMed ID: 29544732 [TBL] [Abstract][Full Text] [Related]
6. Mutational analyses of the extracellular domain of the full-length lutropin/choriogonadotropin receptor suggest leucine-rich repeats 1-6 are involved in hormone binding. Thomas D; Rozell TG; Liu X; Segaloff DL Mol Endocrinol; 1996 Jun; 10(6):760-8. PubMed ID: 8776736 [TBL] [Abstract][Full Text] [Related]
7. LRWD1 expression is regulated through DNA methylation in human testicular embryonal carcinoma cells. Hung JH; Cheng HY; Tsai YC; Pan HA; Omar HA; Chiu CC; Su YM; Lin YM; Teng YN Basic Clin Androl; 2021 May; 31(1):12. PubMed ID: 34011267 [TBL] [Abstract][Full Text] [Related]
8. Single-nucleotide polymorphisms in the LRWD1 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome. Miyamoto T; Koh E; Tsujimura A; Miyagawa Y; Saijo Y; Namiki M; Sengoku K Andrologia; 2014 Apr; 46(3):273-6. PubMed ID: 23445371 [TBL] [Abstract][Full Text] [Related]
9. Production of Slit2 LRR domains in mammalian cells for structural studies and the structure of human Slit2 domain 3. Morlot C; Hemrika W; Romijn RA; Gros P; Cusack S; McCarthy AA Acta Crystallogr D Biol Crystallogr; 2007 Sep; 63(Pt 9):961-8. PubMed ID: 17704564 [TBL] [Abstract][Full Text] [Related]
10. Lrwd1 impacts cell proliferation and the silencing of repetitive DNA elements. Kang TZE; Wan YCE; Zhang Z; Chan KM Genesis; 2022 May; 60(4-5):e23475. PubMed ID: 35451548 [TBL] [Abstract][Full Text] [Related]
11. LRIG1 extracellular domain: structure and function analysis. Xu Y; Soo P; Walker F; Zhang HH; Redpath N; Tan CW; Nicola NA; Adams TE; Garrett TP; Zhang JG; Burgess AW J Mol Biol; 2015 May; 427(10):1934-48. PubMed ID: 25765764 [TBL] [Abstract][Full Text] [Related]
12. Folding and stability of the leucine-rich repeat domain of internalin B from Listeri monocytogenes. Freiberg A; Machner MP; Pfeil W; Schubert WD; Heinz DW; Seckler R J Mol Biol; 2004 Mar; 337(2):453-61. PubMed ID: 15003459 [TBL] [Abstract][Full Text] [Related]
14. The N-homologue LRR domain adopts a folding which explains the TMV-Cg-induced HR-like response in sensitive tobacco plants. Stange C; Matus JT; Domínguez C; Perez-Acle T; Arce-Johnson P J Mol Graph Model; 2008 Jan; 26(5):850-60. PubMed ID: 17631403 [TBL] [Abstract][Full Text] [Related]
15. Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities. Trimmer EE; Zamble DB; Lippard SJ; Essigmann JM Biochemistry; 1998 Jan; 37(1):352-62. PubMed ID: 9425057 [TBL] [Abstract][Full Text] [Related]
16. PIRLs: a novel class of plant intracellular leucine-rich repeat proteins. Forsthoefel NR; Cutler K; Port MD; Yamamoto T; Vernon DM Plant Cell Physiol; 2005 Jun; 46(6):913-22. PubMed ID: 15809230 [TBL] [Abstract][Full Text] [Related]
17. Cloning, modeling, and chromosomal localization for a small leucine-rich repeat proteoglycan (SLRP) family member expressed in human eye. Hobby P; Wyatt MK; Gan W; Bernstein S; Tomarev S; Slingsby C; Wistow G Mol Vis; 2000 May; 6():72-8. PubMed ID: 10837509 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of a plant leucine rich repeat protein with two island domains. Song W; Han Z; Sun Y; Chai J Sci China Life Sci; 2014 Jan; 57(1):137-44. PubMed ID: 24369349 [TBL] [Abstract][Full Text] [Related]
19. AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Chen Y; Aulia S; Li L; Tang BL Brain Res Rev; 2006 Aug; 51(2):265-74. PubMed ID: 16414120 [TBL] [Abstract][Full Text] [Related]
20. Flightless I homolog negatively regulates ChREBP activity in cancer cells. Wu L; Chen H; Zhu Y; Meng J; Li Y; Li M; Yang D; Zhang P; Feng M; Tong X Int J Biochem Cell Biol; 2013 Nov; 45(11):2688-97. PubMed ID: 24055811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]