These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25170879)
1. Biological differences between brackish and fresh water-derived Aedes aegypti from two locations in the Jaffna peninsula of Sri Lanka and the implications for arboviral disease transmission. Ramasamy R; Jude PJ; Veluppillai T; Eswaramohan T; Surendran SN PLoS One; 2014; 9(8):e104977. PubMed ID: 25170879 [TBL] [Abstract][Full Text] [Related]
2. Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae. Jude PJ; Tharmasegaram T; Sivasubramaniyam G; Senthilnanthanan M; Kannathasan S; Raveendran S; Ramasamy R; Surendran SN Parasit Vectors; 2012 Nov; 5():269. PubMed ID: 23174003 [TBL] [Abstract][Full Text] [Related]
4. Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. Ramasamy R; Surendran SN; Jude PJ; Dharshini S; Vinobaba M PLoS Negl Trop Dis; 2011 Nov; 5(11):e1369. PubMed ID: 22132243 [TBL] [Abstract][Full Text] [Related]
6. Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka. Surendran SN; Jayadas TTP; Thiruchenthooran V; Raveendran S; Tharsan A; Santhirasegaram S; Sivabalakrishnan K; Karunakaran S; Ponnaiah B; Gomes L; Malavige GN; Ramasamy R Parasit Vectors; 2021 Mar; 14(1):162. PubMed ID: 33736702 [TBL] [Abstract][Full Text] [Related]
7. Resistance to the larvicide temephos and altered egg and larval surfaces characterize salinity-tolerant Aedes aegypti. Sivabalakrishnan K; Thanihaichelvan M; Tharsan A; Eswaramohan T; Ravirajan P; Hemphill A; Ramasamy R; Surendran SN Sci Rep; 2023 May; 13(1):8160. PubMed ID: 37208485 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic, proteomic and ultrastructural studies on salinity-tolerant Aedes aegypti in the context of rising sea levels and arboviral disease epidemiology. Ramasamy R; Thiruchenthooran V; Jayadas TTP; Eswaramohan T; Santhirasegaram S; Sivabalakrishnan K; Naguleswaran A; Uzest M; Cayrol B; Voisin SN; Bulet P; Surendran SN BMC Genomics; 2021 Apr; 22(1):253. PubMed ID: 33836668 [TBL] [Abstract][Full Text] [Related]
9. Insecticide resistance and, efficacy of space spraying and larviciding in the control of dengue vectors Aedes aegypti and Aedes albopictus in Sri Lanka. Karunaratne SH; Weeraratne TC; Perera MD; Surendran SN Pestic Biochem Physiol; 2013 Sep; 107(1):98-105. PubMed ID: 25149242 [TBL] [Abstract][Full Text] [Related]
10. Seasonality and insecticide susceptibility of dengue vectors: an ovitrap based survey in a residential area of northern Sri Lanka. Surendran SN; Kajatheepan A; Sanjeefkumar KF; Jude PJ Southeast Asian J Trop Med Public Health; 2007 Mar; 38(2):276-82. PubMed ID: 17539277 [TBL] [Abstract][Full Text] [Related]
11. Effect of salinity on the behavior of Aedes aegypti populations from the coast and plateau of southeastern Brazil. de Brito Arduino M; Mucci LF; Serpa LL; Rodrigues Mde M J Vector Borne Dis; 2015 Mar; 52(1):79-87. PubMed ID: 25815871 [TBL] [Abstract][Full Text] [Related]
12. Variations in salinity tolerance of malaria vectors of the Anopheles subpictus complex in Sri Lanka and the implications for malaria transmission. Surendran SN; Jude PJ; Ramasamy R Parasit Vectors; 2011 Jun; 4():117. PubMed ID: 21702917 [TBL] [Abstract][Full Text] [Related]
13. Oviposition preferences of dengue vectors; Aedes aegypti and Aedes albopictus in Sri Lanka under laboratory settings. Gunathilaka N; Ranathunge T; Udayanga L; Wijegunawardena A; Abeyewickreme W Bull Entomol Res; 2018 Aug; 108(4):442-450. PubMed ID: 28950922 [TBL] [Abstract][Full Text] [Related]
14. Resistance to commonly used insecticides and underlying mechanisms of resistance in Aedes aegypti (L.) from Sri Lanka. Fernando HSD; Saavedra-Rodriguez K; Perera R; Black WC; De Silva BGDNK Parasit Vectors; 2020 Aug; 13(1):407. PubMed ID: 32778147 [TBL] [Abstract][Full Text] [Related]
15. Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones. Ramasamy R; Surendran SN Front Physiol; 2012; 3():198. PubMed ID: 22723781 [TBL] [Abstract][Full Text] [Related]
17. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Ngugi HN; Mutuku FM; Ndenga BA; Musunzaji PS; Mbakaya JO; Aswani P; Irungu LW; Mukoko D; Vulule J; Kitron U; LaBeaud AD Parasit Vectors; 2017 Jul; 10(1):331. PubMed ID: 28701194 [TBL] [Abstract][Full Text] [Related]
18. A comparison of aquaporin expression in mosquito larvae (Aedes aegypti) that develop in hypo-osmotic freshwater and iso-osmotic brackish water. Misyura L; Grieco Guardian E; Durant AC; Donini A PLoS One; 2020; 15(8):e0234892. PubMed ID: 32817668 [TBL] [Abstract][Full Text] [Related]
19. Larval ecology of mosquitoes in sylvatic arbovirus foci in southeastern Senegal. Diallo D; Diagne CT; Hanley KA; Sall AA; Buenemann M; Ba Y; Dia I; Weaver SC; Diallo M Parasit Vectors; 2012 Dec; 5():286. PubMed ID: 23216815 [TBL] [Abstract][Full Text] [Related]
20. First record of breeding populations of Aedes albopictus in continental Africa: implications for arboviral transmission. Savage HM; Ezike VI; Nwankwo AC; Spiegel R; Miller BR J Am Mosq Control Assoc; 1992 Mar; 8(1):101-3. PubMed ID: 1583480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]