BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25171084)

  • 1. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae).
    Martin GJ; Hill DR; Olmstead IL; Bergamin A; Shears MJ; Dias DA; Kentish SE; Scales PJ; Botté CY; Callahan DL
    PLoS One; 2014; 9(8):e103389. PubMed ID: 25171084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption.
    Yap BH; Crawford SA; Dagastine RR; Scales PJ; Martin GJ
    J Ind Microbiol Biotechnol; 2016 Dec; 43(12):1671-1680. PubMed ID: 27778140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production.
    Shanmugam S; Mathimani T; Anto S; Sudhakar MP; Kumar SS; Pugazhendhi A
    Bioresour Technol; 2020 May; 304():123061. PubMed ID: 32127245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of total lipid yield by nitrogen, carbon, and iron supplementation in isolated microalgae.
    Sivaramakrishnan R; Incharoensakdi A
    J Phycol; 2017 Aug; 53(4):855-868. PubMed ID: 28523645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative analysis of microalgal lipids for optimization of biodiesel and omega-3 production.
    Olmstead IL; Hill DR; Dias DA; Jayasinghe NS; Callahan DL; Kentish SE; Scales PJ; Martin GJ
    Biotechnol Bioeng; 2013 Aug; 110(8):2096-104. PubMed ID: 23335348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production.
    Bharte S; Desai K
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3492-3500. PubMed ID: 30519914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2.
    Nayak M; Suh WI; Chang YK; Lee B
    Bioresour Technol; 2019 Mar; 276():110-118. PubMed ID: 30616209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and Genetic Regulation for High Lipid Accumulation by
    Zou S; Huang Z; Wu X; Yu X
    Microbiol Spectr; 2022 Oct; 10(5):e0039422. PubMed ID: 36200894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance assessment of biofuel production in an algae-based remediation system.
    Wuang SC; Luo YD; Wang S; Chua PQ; Tee PS
    J Biotechnol; 2016 Mar; 221():43-8. PubMed ID: 26808868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp.
    Vishwakarma R; Dhar DW; Saxena S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7589-7600. PubMed ID: 30659489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production.
    Jia Z; Liu Y; Daroch M; Geng S; Cheng JJ
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1667-79. PubMed ID: 24845038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency.
    Adenan NS; Yusoff FM; Medipally SR; Shariff M
    J Environ Biol; 2016 Jul; 37(4 Spec No):669-76. PubMed ID: 28779725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, Identification and High-Throughput Screening of Neutral Lipid Producing Indigenous Microalgae from South African Aquatic Habitats.
    Gumbi ST; Majeke BM; Olaniran AO; Mutanda T
    Appl Biochem Biotechnol; 2017 May; 182(1):382-399. PubMed ID: 27864781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors.
    Feng P; Xu Z; Qin L; Asraful Alam M; Wang Z; Zhu S
    Bioresour Technol; 2020 Apr; 301():122762. PubMed ID: 31972402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid production from indigenous Greek microalgae: a possible biodiesel source.
    Savvides AL; Moisi K; Katsifas EA; Karagouni AD; Hatzinikolaou DG
    Biotechnol Lett; 2019 May; 41(4-5):533-545. PubMed ID: 30993480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty Acid Production and Direct Acyl Transfer through Polar Lipids Control TAG Biosynthesis during Nitrogen Deprivation in the Halotolerant Alga
    Avidan O; Malitsky S; Pick U
    Mar Drugs; 2021 Jun; 19(7):. PubMed ID: 34202376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation.
    Liu S; Zhao Y; Liu L; Ao X; Ma L; Wu M; Ma F
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3507-18. PubMed ID: 25724975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.
    Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R
    Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227.
    Cho S; Lee D; Luong TT; Park S; Oh YK; Lee T
    J Microbiol Biotechnol; 2011 Oct; 21(10):1073-80. PubMed ID: 22031034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae.
    Du ZY; Benning C
    Subcell Biochem; 2016; 86():179-205. PubMed ID: 27023236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.