These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25171147)

  • 21. [Reactive oxygen and nitrogen species].
    Ługowski M; Saczko J; Kulbacka J; Banaś T
    Pol Merkur Lekarski; 2011 Nov; 31(185):313-7. PubMed ID: 22299536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox signaling in hypertension.
    Paravicini TM; Touyz RM
    Cardiovasc Res; 2006 Jul; 71(2):247-58. PubMed ID: 16765337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae.
    Ayer A; Gourlay CW; Dawes IW
    FEMS Yeast Res; 2014 Feb; 14(1):60-72. PubMed ID: 24164795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome.
    Tasaka S; Amaya F; Hashimoto S; Ishizaka A
    Antioxid Redox Signal; 2008 Apr; 10(4):739-53. PubMed ID: 18179359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The TRIPS (Toll-like receptors in immuno-inflammatory pathogenesis) Hypothesis: a novel postulate to understand schizophrenia.
    Venkatasubramanian G; Debnath M
    Prog Neuropsychopharmacol Biol Psychiatry; 2013 Jul; 44():301-11. PubMed ID: 23587629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics.
    Bykova NV; Rampitsch C
    Proteomics; 2013 Feb; 13(3-4):579-96. PubMed ID: 23197359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interplay between protein carbonylation and nitrosylation in plants.
    Lounifi I; Arc E; Molassiotis A; Job D; Rajjou L; Tanou G
    Proteomics; 2013 Feb; 13(3-4):568-78. PubMed ID: 23034931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox regulation of cancer metastasis: molecular signaling and therapeutic opportunities.
    Yang W; Zou L; Huang C; Lei Y
    Drug Dev Res; 2014 Aug; 75(5):331-41. PubMed ID: 25160073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of redox potential and reactive oxygen species in stress signaling.
    Adler V; Yin Z; Tew KD; Ronai Z
    Oncogene; 1999 Nov; 18(45):6104-11. PubMed ID: 10557101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free radicals and redox signalling in T-cells during chronic inflammation and ageing.
    Griffiths HR; Dunston CR; Bennett SJ; Grant MM; Phillips DC; Kitas GD
    Biochem Soc Trans; 2011 Oct; 39(5):1273-8. PubMed ID: 21936801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds.
    Becker K; Schroecksnadel S; Gostner J; Zaknun C; Schennach H; Uberall F; Fuchs D
    Phytomedicine; 2014 Jan; 21(2):164-71. PubMed ID: 24041614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective and Reversible Approaches Toward Imaging Redox Signaling Using Small-Molecule Probes.
    Kolanowski JL; Kaur A; New EJ
    Antioxid Redox Signal; 2016 May; 24(13):713-30. PubMed ID: 26607478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extracellular/microenvironmental redox state.
    Chaiswing L; Oberley TD
    Antioxid Redox Signal; 2010 Aug; 13(4):449-65. PubMed ID: 20017602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inflammation, Lipid (Per)oxidation, and Redox Regulation.
    Dias IHK; Milic I; Heiss C; Ademowo OS; Polidori MC; Devitt A; Griffiths HR
    Antioxid Redox Signal; 2020 Jul; 33(3):166-190. PubMed ID: 31989835
    [No Abstract]   [Full Text] [Related]  

  • 37. Redox Regulation of Inflammatory Processes Is Enzymatically Controlled.
    Lorenzen I; Mullen L; Bekeschus S; Hanschmann EM
    Oxid Med Cell Longev; 2017; 2017():8459402. PubMed ID: 29118897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox regulation of Fcgamma receptor-mediated phagocytosis: implications for host defense and tissue injury.
    Pricop L; Salmon JE
    Antioxid Redox Signal; 2002 Feb; 4(1):85-95. PubMed ID: 11970846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox Signaling, Neuroinflammation, and Neurodegeneration.
    Aguilera G; Colín-González AL; Rangel-López E; Chavarría A; Santamaría A
    Antioxid Redox Signal; 2018 Jun; 28(18):1626-1651. PubMed ID: 28467722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews.
    Gào X; Schöttker B
    Oncotarget; 2017 Aug; 8(31):51888-51906. PubMed ID: 28881698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.