These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25171175)

  • 1. Theory to predict shear stress on cells in turbulent blood flow.
    Morshed KN; Bark D; Forleo M; Dasi LP
    PLoS One; 2014; 9(8):e105357. PubMed ID: 25171175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of energy dissipation rate as a predictor of mechanical blood damage.
    Faghih MM; Sharp MK
    Artif Organs; 2019 Jul; 43(7):666-676. PubMed ID: 30588644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations.
    Ozturk M; O'Rear EA; Papavassiliou DV
    Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device.
    Torner B; Konnigk L; Wurm FH
    Int J Artif Organs; 2019 Dec; 42(12):735-747. PubMed ID: 31328604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of eddy length scale on mechanical loading of blood cells in turbulent flow.
    Dooley PN; Quinlan NJ
    Ann Biomed Eng; 2009 Dec; 37(12):2449-58. PubMed ID: 19757062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of turbulent viscous shear stress on red blood cell hemolysis.
    Yen JH; Chen SF; Chern MK; Lu PC
    J Artif Organs; 2014 Jun; 17(2):178-85. PubMed ID: 24619800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump.
    Avci M; Heck M; O'Rear EA; Papavassiliou DV
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1709-1722. PubMed ID: 34106362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis.
    Kameneva MV; Burgreen GW; Kono K; Repko B; Antaki JF; Umezu M
    ASAIO J; 2004; 50(5):418-23. PubMed ID: 15497379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses.
    Sallam AM; Hwang NH
    Biorheology; 1984; 21(6):783-97. PubMed ID: 6240286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.
    Tabe R; Ghalichi F; Hossainpour S; Ghasemzadeh K
    Biomed Mater Eng; 2016 Aug; 27(2-3):119-29. PubMed ID: 27567769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Hemolysis in Turbulent Shear Orifice Flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 May; 20(5):553-559. PubMed ID: 28868711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking turbulence in blood.
    Antiga L; Steinman DA
    Biorheology; 2009; 46(2):77-81. PubMed ID: 19458411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the representation of effective stress for computing hemolysis.
    Wu P; Gao Q; Hsu PL
    Biomech Model Mechanobiol; 2019 Jun; 18(3):665-679. PubMed ID: 30604300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and prediction of flow-induced hemolysis: a review.
    Faghih MM; Sharp MK
    Biomech Model Mechanobiol; 2019 Aug; 18(4):845-881. PubMed ID: 30847662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
    Marrero VL; Tichy JA; Sahni O; Jansen KE
    J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
    Avari H; Savory E; Rogers KA
    Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.