These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25171501)

  • 1. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses.
    Sahore V; Fritsch I
    Anal Chem; 2014 Oct; 86(19):9405-11. PubMed ID: 25171501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-magnetohydrodynamic microfluidics without channels and compatible with electrochemical detection under immunoassay conditions.
    Weston MC; Nash CK; Fritsch I
    Anal Chem; 2010 Sep; 82(17):7068-72. PubMed ID: 20681513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature co-fired ceramic microchannels with individually addressable screen-printed gold electrodes on four walls for self-contained electrochemical immunoassays.
    Fakunle ES; Fritsch I
    Anal Bioanal Chem; 2010 Nov; 398(6):2605-15. PubMed ID: 20803005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.
    Cheah LT; Fritsch I; Haswell SJ; Greenman J
    Biotechnol Bioeng; 2012 Jul; 109(7):1827-34. PubMed ID: 22271160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flat flow profiles achieved with microfluidics generated by redox-magnetohydrodynamics.
    Sahore V; Fritsch I
    Anal Chem; 2013 Dec; 85(24):11809-16. PubMed ID: 24274592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.
    Akanda MR; Choe YL; Yang H
    Anal Chem; 2012 Jan; 84(2):1049-55. PubMed ID: 22208164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D imaging of flow patterns in an internally-pumped microfluidic device: redox magnetohydrodynamics and electrochemically-generated density gradients.
    Gao F; Kreidermacher A; Fritsch I; Heyes CD
    Anal Chem; 2013 May; 85(9):4414-22. PubMed ID: 23537496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA.
    Herrmann M; Veres T; Tabrizian M
    Lab Chip; 2006 Apr; 6(4):555-60. PubMed ID: 16572219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory and practice of enzyme bioaffinity electrodes. Chemical, enzymatic, and electrochemical amplification of in situ product detection.
    Limoges B; Marchal D; Mavré F; Savéant JM
    J Am Chem Soc; 2008 Jun; 130(23):7276-85. PubMed ID: 18491854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated microfluidic magnetic immunosensor for quantification of human serum IgG antibodies to Helicobacter pylori.
    Pereira SV; Messina GA; Raba J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jan; 878(2):253-7. PubMed ID: 19481984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations of redox magnetohydrodynamic fluid flow at microelectrode arrays using microbeads.
    Anderson EC; Weston MC; Fritsch I
    Anal Chem; 2010 Apr; 82(7):2643-51. PubMed ID: 20210341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(3,4-ethylenedioxythiophene)-Modified Electrodes for Microfluidics Pumping with Redox-Magnetohydrodynamics: Improving Compatibility for Broader Applications by Eliminating Addition of Redox Species to Solution.
    Nash CK; Fritsch I
    Anal Chem; 2016 Feb; 88(3):1601-9. PubMed ID: 26631414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable Nanogap Sensors for Non-Redox Enzyme Assays.
    Su X; Tayebi N; Credo GM; Wu K; Elibol OH; Liu DJ; Daniels JS; Li H; Hall DA; Varma M
    ACS Sens; 2018 Sep; 3(9):1773-1781. PubMed ID: 30156096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes.
    Kwon SJ; Yang H; Jo K; Kwak J
    Analyst; 2008 Nov; 133(11):1599-604. PubMed ID: 18936839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a microplate reader compatible microfluidic chip for ELISA.
    Hou F; Zhang Q; Yang J; Li X; Yang X; Wang S; Cheng Z
    Biomed Microdevices; 2012 Aug; 14(4):729-37. PubMed ID: 22526682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing flow velocities in redox-magnetohydrodynamic microfluidics using the transient faradaic current.
    Weston MC; Nash CK; Homesley JJ; Fritsch I
    Anal Chem; 2012 Nov; 84(21):9402-9. PubMed ID: 23057608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples.
    Messina GA; Panini NV; Martinez NA; Raba J
    Anal Biochem; 2008 Sep; 380(2):262-7. PubMed ID: 18577366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices.
    Noiphung J; Songjaroen T; Dungchai W; Henry CS; Chailapakul O; Laiwattanapaisal W
    Anal Chim Acta; 2013 Jul; 788():39-45. PubMed ID: 23845479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multianalyte electrochemical biosensor on a monolith electrode by optically scanning the electrical double layer.
    Lee SW; Saraf RF
    Biosens Bioelectron; 2014 Jul; 57():41-7. PubMed ID: 24534579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods.
    Hervás M; López MA; Escarpa A
    Analyst; 2011 May; 136(10):2131-8. PubMed ID: 21394379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.