These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25171601)

  • 1. Oxygen vacancy diffusion in bare ZnO nanowires.
    Deng B; Luisa da Rosa A; Frauenheim T; Xiao JP; Shi XQ; Zhang RQ; Van Hove MA
    Nanoscale; 2014 Oct; 6(20):11882-6. PubMed ID: 25171601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires.
    Schmidt TM; Miwa RH
    Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assorted analytical and spectroscopic techniques for the optimization of the defect-related properties in size-controlled ZnO nanowires.
    Wong KM; Fang Y; Devaux A; Wen L; Huang J; De Cola L; Lei Y
    Nanoscale; 2011 Nov; 3(11):4830-9. PubMed ID: 21986965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating the growth of chemically deposited ZnO nanowires and the formation of nitrogen- and hydrogen-related defects using pH adjustment.
    Villafuerte J; Sarigiannidou E; Donatini F; Kioseoglou J; Chaix-Pluchery O; Pernot J; Consonni V
    Nanoscale Adv; 2022 Mar; 4(7):1793-1807. PubMed ID: 36132162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of oxygen vacancies on water wettability of a ZnO surface.
    Hu H; Ji HF; Sun Y
    Phys Chem Chem Phys; 2013 Oct; 15(39):16557-65. PubMed ID: 23949186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA.
    Jang K; You J; Park C; Park H; Choi J; Choi CH; Park J; Lee H; Na S
    Nanotechnology; 2016 Sep; 27(36):365501. PubMed ID: 27479871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect properties of ZnO nanowires revealed from an optically detected magnetic resonance study.
    Stehr JE; Chen SL; Filippov S; Devika M; Koteeswara Reddy N; Tu CW; Chen WM; Buyanova IA
    Nanotechnology; 2013 Jan; 24(1):015701. PubMed ID: 23221124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Hydrogen-Related Defects in ZnO Nanowires Using Oxygen Plasma Treatment by Ion Energy Adjustment.
    Dieulesaint A; Chaix-Pluchery O; Weber M; Donatini F; Lacoste A; Consonni V; Sarigiannidou E
    Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced photoluminescence and photoconductivity of ZnO nanowires with sputtered Zn.
    Bera A; Ghosh T; Basak D
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2898-903. PubMed ID: 20919682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires.
    Rosini M; Magri R
    ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistive Switching of Plasma-Treated Zinc Oxide Nanowires for Resistive Random Access Memory.
    Lai Y; Qiu W; Zeng Z; Cheng S; Yu J; Zheng Q
    Nanomaterials (Basel); 2016 Jan; 6(1):. PubMed ID: 28344273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanochemically induced sulfur doping in ZnO via oxygen vacancy formation.
    Daiko Y; Schmidt J; Kawamura G; Romeis S; Segets D; Iwamoto Y; Peukert W
    Phys Chem Chem Phys; 2017 May; 19(21):13838-13845. PubMed ID: 28513678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterintuitive Reconstruction of the Polar O-Terminated ZnO Surface with Zinc Vacancies and Hydrogen.
    Jacobs R; Zheng B; Puchala B; Voyles PM; Yankovich AB; Morgan D
    J Phys Chem Lett; 2016 Nov; 7(22):4483-4487. PubMed ID: 27780360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving the Puzzle of Charge Carrier Lifetime in ZnO by Revisiting the Role of Oxygen Vacancy.
    Yang Y; Zhang Y; Fernandez-Alberti S; Long R
    J Phys Chem Lett; 2024 Jan; 15(1):1-8. PubMed ID: 38126721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure and oxygen vacancies in PdO and ZnO: validation of DFT models.
    Bruska MK; Czekaj I; Delley B; Mantzaras J; Wokaun A
    Phys Chem Chem Phys; 2011 Sep; 13(35):15947-54. PubMed ID: 21826290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Calculations of the Electronic Structure and Optical Properties of Yttrium-Doped ZnO Monolayer with Vacancy.
    Wu Q; Wang P; Liu Y; Yang H; Cheng J; Guo L; Yang Y; Zhang Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations.
    Murgida GE; Ganduglia-Pirovano MV
    Phys Rev Lett; 2013 Jun; 110(24):246101. PubMed ID: 25165940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient nitrogen incorporation in ZnO nanowires.
    Stehr JE; Chen WM; Reddy NK; Tu CW; Buyanova IA
    Sci Rep; 2015 Aug; 5():13406. PubMed ID: 26299157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures.
    Sun Y; Zhao Q; Gao J; Ye Y; Wang W; Zhu R; Xu J; Chen L; Yang J; Dai L; Liao ZM; Yu D
    Nanoscale; 2011 Oct; 3(10):4418-26. PubMed ID: 21931901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.