These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2517173)

  • 41. Optimizing detection of heat-injured Listeria monocytogenes in pasteurized milk.
    Teo AY; Ziegler GR; Knabel SJ
    J Food Prot; 2001 Jul; 64(7):1000-11. PubMed ID: 11456184
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth of Listeria monocytogenes at refrigeration temperatures.
    Walker SJ; Archer P; Banks JG
    J Appl Bacteriol; 1990 Feb; 68(2):157-62. PubMed ID: 2108109
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a simple recovery-enrichment system for enhanced detection of heat-injured Listeria monocytogenes in pasteurized milk.
    Teo AY; Knabel SJ
    J Food Prot; 2000 Apr; 63(4):462-72. PubMed ID: 10772211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel strictly anaerobic recovery and enrichment system incorporating lithium for detection of heat-injured Listeria monocytogenes in pasteurized milk containing background microflora.
    Mendonca AF; Knabel SJ
    Appl Environ Microbiol; 1994 Nov; 60(11):4001-8. PubMed ID: 7993088
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative recovery of uninjured and heat-injured Listeria monocytogenes cells from bovine milk.
    Crawford RG; Beliveau CM; Peeler JT; Donnelly CW; Bunning VK
    Appl Environ Microbiol; 1989 Jun; 55(6):1490-4. PubMed ID: 2504109
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermotolerance of heat-shocked Listeria monocytogenes in milk exposed to high-temperature, short-time pasteurization.
    Bunning VK; Crawford RG; Tierney JT; Peeler JT
    Appl Environ Microbiol; 1992 Jun; 58(6):2096-8. PubMed ID: 1622288
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal resistance of Listeria monocytogenes in foods.
    Farber JM
    Int J Food Microbiol; 1989 Jun; 8(3):285-91. PubMed ID: 2518385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined d-Tryptophan Treatment and Temperature Stress Exert Antimicrobial Activity against Listeria monocytogenes in Milk.
    Elafify M; Chen J; Abdelkhalek A; Elsherbini M; Al-Ashmawy M; Koseki S
    J Food Prot; 2020 Apr; 83(4):644-650. PubMed ID: 32221568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Survival of Listeria monocytogenes in milk during high-temperature, short-time pasteurization.
    Doyle MP; Glass KA; Beery JT; Garcia GA; Pollard DJ; Schultz RD
    Appl Environ Microbiol; 1987 Jul; 53(7):1433-8. PubMed ID: 3116926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mathematically modeling the repair of heat-injured Listeria monocytogenes as affected by temperature, pH, and salt concentration.
    Chawla CS; Chen H; Donnelly CW
    Int J Food Microbiol; 1996 Jul; 30(3):231-42. PubMed ID: 8854177
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization.
    Knabel SJ; Walker HW; Hartman PA; Mendonca AF
    Appl Environ Microbiol; 1990 Feb; 56(2):370-6. PubMed ID: 2106284
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal inactivation of Listeria monocytogenes during rapid and slow heating in sous vide cooked beef.
    Hansen TB; Knøchel S
    Lett Appl Microbiol; 1996 Jun; 22(6):425-8. PubMed ID: 8695067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Persistence at source of Listeria spp. in raw milk.
    Slade PJ; Fistrovici EC; Collins-Thompson DL
    Int J Food Microbiol; 1989 Nov; 9(3):197-203. PubMed ID: 2518229
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced thermal destruction of Listeria monocytogenes and Staphylococcus aureus by the lactoperoxidase system.
    Kamau DN; Doores S; Pruitt KM
    Appl Environ Microbiol; 1990 Sep; 56(9):2711-6. PubMed ID: 2125815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of guar gum on the thermal stability of Listeria innocua, Listeria monocytogenes, and gamma-glutamyl transpeptidase during high-temperature short-time pasteurization of bovine milk.
    Piyasena P; McKellar RC
    J Food Prot; 1999 Aug; 62(8):861-6. PubMed ID: 10456737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cold shock induction of thermal sensitivity in Listeria monocytogenes.
    Miller AJ; Bayles DO; Eblen BS
    Appl Environ Microbiol; 2000 Oct; 66(10):4345-50. PubMed ID: 11010880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mathematical modelling of the stress resistance induced in Listeria monocytogenes during dynamic, mild heat treatments.
    Garre A; González-Tejedor GA; Aznar A; Fernández PS; Egea JA
    Food Microbiol; 2019 Dec; 84():103238. PubMed ID: 31421752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resistance of heat-shocked cells of Listeria monocytogenes to mano-sonication and mano-thermo-sonication.
    Pagán R; Mañas P; Palop A; Sala FJ
    Lett Appl Microbiol; 1999 Jan; 28(1):71-5. PubMed ID: 10030036
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantifying variability on thermal resistance of Listeria monocytogenes.
    Aryani DC; den Besten HM; Hazeleger WC; Zwietering MH
    Int J Food Microbiol; 2015 Jan; 193():130-8. PubMed ID: 25462932
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A predictive model to determine the effects of pH, milkfat, and temperature on thermal inactivation of Listeria monocytogenes.
    Chhabra AT; Carter WH; Linton RH; Cousin MA
    J Food Prot; 1999 Oct; 62(10):1143-9. PubMed ID: 10528717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.