BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25172027)

  • 1. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.
    Pujol-Vila F; Vigués N; Díaz-González M; Muñoz-Berbel X; Mas J
    Biosens Bioelectron; 2015 May; 67():272-9. PubMed ID: 25172027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.
    Pujol-Vila F; Vigués N; Guerrero-Navarro A; Jiménez S; Gómez D; Fernández M; Bori J; Vallès B; Riva MC; Muñoz-Berbel X; Mas J
    Anal Chim Acta; 2016 Mar; 910():60-7. PubMed ID: 26873469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli.
    Catterall K; Robertson D; Hudson S; Teasdale PR; Welsh DT; John R
    Talanta; 2010 Jul; 82(2):751-7. PubMed ID: 20602965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of humic substances on toxicity of inorganic oxidizer bioluminescent monitoring.
    Tarasova AS; Stom DI; Kudryasheva NS
    Environ Toxicol Chem; 2011 May; 30(5):1013-7. PubMed ID: 21309025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the effect of oxygen and microbial inhibitors to optimize ferricyanide-mediated BOD assay.
    Bonetto MC; Sacco NJ; Ohlsson AH; Cortón E
    Talanta; 2011 Jul; 85(1):455-62. PubMed ID: 21645725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitive, rapid and inexpensive way to assay pesticide toxicity based on electrochemical biosensor.
    Yong D; Liu C; Yu D; Dong S
    Talanta; 2011 Mar; 84(1):7-12. PubMed ID: 21315890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation.
    Vigués N; Pujol-Vila F; Macanás J; Muñoz M; Muñoz-Berbel X; Mas J
    Talanta; 2020 Jan; 206():120192. PubMed ID: 31514850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct toxicity assessment of toxic chemicals with electrochemical method.
    Liu C; Sun T; Xu X; Dong S
    Anal Chim Acta; 2009 May; 641(1-2):59-63. PubMed ID: 19393367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid and sensitive p-benzoquinone-mediated bioassay for determination of heavy metal toxicity in water.
    Yu D; Zhai J; Yong D; Dong S
    Analyst; 2013 Jun; 138(11):3297-302. PubMed ID: 23612368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity.
    Rosen G; Osorio-Robayo A; Rivera-Duarte I; Lapota D
    Arch Environ Contam Toxicol; 2008 May; 54(4):606-11. PubMed ID: 18026774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive electrochemical microbial biosensor for p-nitrophenylorganophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons.
    Tang X; Zhang T; Liang B; Han D; Zeng L; Zheng C; Li T; Wei M; Liu A
    Biosens Bioelectron; 2014 Oct; 60():137-42. PubMed ID: 24794405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode.
    Daniel R; Almog R; Ron A; Belkin S; Diamand YS
    Biosens Bioelectron; 2008 Dec; 24(4):888-93. PubMed ID: 18774705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical modeling of bioluminescence in whole cell biosensors.
    Ben-Yoav H; Elad T; Shlomovits O; Belkin S; Shacham-Diamand Y
    Biosens Bioelectron; 2009 Mar; 24(7):1969-73. PubMed ID: 19131239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox.
    Ricco G; Tomei MC; Ramadori R; Laera G
    Water Res; 2004 Apr; 38(8):2103-10. PubMed ID: 15087191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a simple method for biotoxicity measurement using ultramicroelectrode array under non-deaerated condition.
    Yong D; Liu L; Yu D; Dong S
    Anal Chim Acta; 2011 Sep; 701(2):164-8. PubMed ID: 21801883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of ferricyanide effects on microorganisms with multi-methods.
    Liu C; Sun T; Zhai Y; Dong S
    Talanta; 2009 Apr; 78(2):613-7. PubMed ID: 19203633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay.
    Kim BC; Park KS; Kim SD; Gu MB
    Biosens Bioelectron; 2003 May; 18(5-6):821-6. PubMed ID: 12706597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferricyanide reduction by Escherichia coli: kinetics, mechanism, and application to the optimization of recombinant fermentations.
    Ertl P; Unterladstaetter B; Bayer K; Mikkelsen SR
    Anal Chem; 2000 Oct; 72(20):4949-56. PubMed ID: 11055714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid antibiotic susceptibility testing via electrochemical measurement of ferricyanide reduction by Escherichia coli and Clostridium sporogenes.
    Ertl P; Robello E; Battaglini F; Mikkelsen SR
    Anal Chem; 2000 Oct; 72(20):4957-64. PubMed ID: 11055715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fabrication and the use of immobilized cells as test organisms in a ferricyanide-based toxicity biosensor.
    Liu C; Xu Y; Han X; Chang X
    Environ Toxicol Chem; 2018 Feb; 37(2):329-335. PubMed ID: 28840945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.