These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25172179)

  • 1. The effect that energy storage and return feet have on the propulsion of the body: a pilot study.
    Crimin A; McGarry A; Harris EJ; Solomonidis SE
    Proc Inst Mech Eng H; 2014 Sep; 228(9):908-15. PubMed ID: 25172179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost.
    Wezenberg D; Cutti AG; Bruno A; Houdijk H
    J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation.
    Segal AD; Zelik KE; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Adamczyk PG; Collins SH; Kuo AD; Czerniecki JM
    Hum Mov Sci; 2012 Aug; 31(4):918-31. PubMed ID: 22100728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy storage and return prostheses: does patient perception correlate with biomechanical analysis?
    Hafner BJ; Sanders JE; Czerniecki J; Fergason J
    Clin Biomech (Bristol); 2002 Jun; 17(5):325-44. PubMed ID: 12084537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.
    Takahashi KZ; Stanhope SJ
    Gait Posture; 2013 Sep; 38(4):818-23. PubMed ID: 23628408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.
    Ventura JD; Klute GK; Neptune RR
    Gait Posture; 2011 Feb; 33(2):220-6. PubMed ID: 21145747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacture of energy storage and return prosthetic feet using selective laser sintering.
    South BJ; Fey NP; Bosker G; Neptune RR
    J Biomech Eng; 2010 Jan; 132(1):015001. PubMed ID: 20524754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet.
    Portnoy S; Kristal A; Gefen A; Siev-Ner I
    Gait Posture; 2012 Jan; 35(1):121-5. PubMed ID: 21955382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet.
    Prince F; Winter DA; Sjonnensen G; Powell C; Wheeldon RK
    J Rehabil Res Dev; 1998 Jun; 35(2):177-85. PubMed ID: 9651889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of gait training and prosthetic foot category on external work symmetry during unilateral transtibial amputee gait.
    Agrawal V; Gailey R; O'Toole C; Gaunaurd I; Finnieston A
    Prosthet Orthot Int; 2013 Oct; 37(5):396-403. PubMed ID: 23364890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy storage and release of prosthetic feet. Part 1: Biomechanical analysis related to user benefits.
    Postema K; Hermens HJ; de Vries J; Koopman HF; Eisma WH
    Prosthet Orthot Int; 1997 Apr; 21(1):17-27. PubMed ID: 9141122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trajectory of the center of rotation in non-articulated energy storage and return prosthetic feet.
    Sawers A; Hahn ME
    J Biomech; 2011 Jun; 44(9):1673-7. PubMed ID: 21481878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transtibial amputee gait efficiency: Energy storage and return versus solid ankle cushioned heel prosthetic feet.
    Gardiner J; Bari AZ; Howard D; Kenney L
    J Rehabil Res Dev; 2016; 53(6):1133-1138. PubMed ID: 28355033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.
    Rábago CA; Aldridge Whitehead J; Wilken JM
    PLoS One; 2016; 11(12):e0166815. PubMed ID: 27977681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.
    Zelik KE; Collins SH; Adamczyk PG; Segal AD; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Czerniecki JM; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):411-9. PubMed ID: 21708509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing prosthetic foot energy return affects whole-body mechanics during walking on level ground and slopes.
    Childers WL; Takahashi KZ
    Sci Rep; 2018 Mar; 8(1):5354. PubMed ID: 29599517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system.
    Major MJ; Scham J; Orendurff M
    Prosthet Orthot Int; 2018 Apr; 42(2):198-207. PubMed ID: 28486847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading.
    Ventura JD; Klute GK; Neptune RR
    Clin Biomech (Bristol); 2011 Mar; 26(3):298-303. PubMed ID: 21093131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of mechanical energy profiles of passive and active below-knee prostheses: a case study.
    Takahashi KZ; Horne JR; Stanhope SJ
    Prosthet Orthot Int; 2015 Apr; 39(2):150-6. PubMed ID: 24418933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.