These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 25172179)
21. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J; Pros D Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907 [TBL] [Abstract][Full Text] [Related]
22. Energy storing property of so-called energy-storing prosthetic feet. Ehara Y; Beppu M; Nomura S; Kunimi Y; Takahashi S Arch Phys Med Rehabil; 1993 Jan; 74(1):68-72. PubMed ID: 8420524 [TBL] [Abstract][Full Text] [Related]
23. Characterizing adaptations of prosthetic feet in the frontal plane. Ernst M; Altenburg B; Schmalz T Prosthet Orthot Int; 2020 Aug; 44(4):225-233. PubMed ID: 32493118 [TBL] [Abstract][Full Text] [Related]
24. Instantaneous stiffness and hysteresis of dynamic elastic response prosthetic feet. Webber CM; Kaufman K Prosthet Orthot Int; 2017 Oct; 41(5):463-468. PubMed ID: 28008788 [TBL] [Abstract][Full Text] [Related]
25. Symmetry in external work (SEW): a novel method of quantifying gait differences between prosthetic feet. Agrawal V; Gailey R; O'Toole C; Gaunaurd I; Dowell T Prosthet Orthot Int; 2009 Jun; 33(2):148-56. PubMed ID: 19367518 [TBL] [Abstract][Full Text] [Related]
26. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users. Hansen AH; Meier MR; Sessoms PH; Childress DS Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519 [TBL] [Abstract][Full Text] [Related]
27. Performance of Optimized Prosthetic Ankle Designs That Are Based on a Hydraulic Variable Displacement Actuator (VDA). Gardiner J; Bari AZ; Kenney L; Twiste M; Moser D; Zahedi S; Howard D IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2418-2426. PubMed ID: 29220324 [TBL] [Abstract][Full Text] [Related]
28. Stiffness and energy storage characteristics of energy storage and return prosthetic feet. Womac ND; Neptune RR; Klute GK Prosthet Orthot Int; 2019 Jun; 43(3):266-275. PubMed ID: 30688551 [TBL] [Abstract][Full Text] [Related]
29. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. Torburn L; Powers CM; Guiterrez R; Perry J J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650 [TBL] [Abstract][Full Text] [Related]
30. Comparison of gait between young adults fitted with the space foot and nondisabled persons. Prince F; Allard P; McFadyen BJ; Aissaoui R Arch Phys Med Rehabil; 1993 Dec; 74(12):1369-76. PubMed ID: 8259907 [TBL] [Abstract][Full Text] [Related]
31. Transducer-based comparisons of the prosthetic feet used by transtibial amputees for different walking activities: a pilot study. Neumann ES; Yalamanchili K; Brink J; Lee JS Prosthet Orthot Int; 2012 Jun; 36(2):203-16. PubMed ID: 22344316 [TBL] [Abstract][Full Text] [Related]
32. Energy storage and release of prosthetic feet. Part 2: Subjective ratings of 2 energy storing and 2 conventional feet, user choice of foot and deciding factor. Postema K; Hermens HJ; de Vries J; Koopman HF; Eisma WH Prosthet Orthot Int; 1997 Apr; 21(1):28-34. PubMed ID: 9141123 [TBL] [Abstract][Full Text] [Related]
33. Preliminary study of a robotic foot-ankle prosthesis with active alignment. LaPre AK; Wedge RD; Umberger BR; Sup FC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1299-1304. PubMed ID: 28814000 [TBL] [Abstract][Full Text] [Related]
34. Comparison of methods for the calculation of energy storage and return in a dynamic elastic response prosthesis. Geil MD; Parnianpour M; Quesada P; Berme N; Simon S J Biomech; 2000 Dec; 33(12):1745-50. PubMed ID: 11006404 [TBL] [Abstract][Full Text] [Related]
35. Mechanical and dynamic characterization of prosthetic feet for high activity users during weighted and unweighted walking. Koehler-McNicholas SR; Nickel EA; Barrons K; Blaharski KE; Dellamano CA; Ray SF; Schnall BL; Hendershot BD; Hansen AH PLoS One; 2018; 13(9):e0202884. PubMed ID: 30208040 [TBL] [Abstract][Full Text] [Related]
36. Kinetic energy scavenging in a prosthetic foot using a fluidic system. Pylatiuk C; Metzger F; Wiegand R; Bretthauer G Biomed Tech (Berl); 2013 Aug; 58(4):353-8. PubMed ID: 23912217 [TBL] [Abstract][Full Text] [Related]
37. Differences in Military Obstacle Course Performance Between Three Energy-Storing and Shock-Adapting Prosthetic Feet in High-Functioning Transtibial Amputees: A Double-Blind, Randomized Control Trial. Highsmith MJ; Kahle JT; Miro RM; Lura DJ; Carey SL; Wernke MM; Kim SH; Quillen WS Mil Med; 2016 Nov; 181(S4):45-54. PubMed ID: 27849461 [TBL] [Abstract][Full Text] [Related]
38. Variability of kinetic variables during gait in unilateral transtibial amputees. Svoboda Z; Janura M; Cabell L; Elfmark M Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580 [TBL] [Abstract][Full Text] [Related]
39. Stiffness and hysteresis properties of some prosthetic feet. van Jaarsveld HW; Grootenboer HJ; de Vries J; Koopman HF Prosthet Orthot Int; 1990 Dec; 14(3):117-24. PubMed ID: 2095529 [TBL] [Abstract][Full Text] [Related]
40. The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation. Cherelle P; Grosu V; Cestari M; Vanderborght B; Lefeber D Biomed Eng Online; 2016 Dec; 15(Suppl 3):145. PubMed ID: 28105954 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]