BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 25172223)

  • 41. Thiocyanate-dependent induction of endothelial cell adhesion molecule expression by phagocyte peroxidases: a novel HOSCN-specific oxidant mechanism to amplify inflammation.
    Wang JG; Mahmud SA; Nguyen J; Slungaard A
    J Immunol; 2006 Dec; 177(12):8714-22. PubMed ID: 17142773
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL.
    Exner M; Hermann M; Hofbauer R; Hartmann B; Kapiotis S; Gmeiner B
    Free Radic Biol Med; 2004 Jul; 37(2):146-55. PubMed ID: 15203186
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resistance of Streptococcus pneumoniae to Hypothiocyanous Acid Generated by Host Peroxidases.
    Shearer HL; Kaldor CD; Hua H; Kettle AJ; Parker HA; Hampton MB
    Infect Immun; 2022 Mar; 90(3):e0053021. PubMed ID: 35156851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. What are the plasma targets of the oxidant hypochlorous acid? A kinetic modeling approach.
    Pattison DI; Hawkins CL; Davies MJ
    Chem Res Toxicol; 2009 May; 22(5):807-17. PubMed ID: 19326902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties.
    Chandler JD; Day BJ
    Biochem Pharmacol; 2012 Dec; 84(11):1381-7. PubMed ID: 22968041
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of thiocyanate in the modulation of myeloperoxidase-derived oxidant induced damage to macrophages.
    Guo C; Davies MJ; Hawkins CL
    Redox Biol; 2020 Sep; 36():101666. PubMed ID: 32781424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High plasma thiocyanate levels in smokers are a key determinant of thiol oxidation induced by myeloperoxidase.
    Morgan PE; Pattison DI; Talib J; Summers FA; Harmer JA; Celermajer DS; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2011 Nov; 51(9):1815-22. PubMed ID: 21884783
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Meredith JD; Chapman I; Ulrich K; Sebastian C; Stull F; Gray MJ
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2119368119. PubMed ID: 35867824
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation and detection of oxidant-generated tryptophan dimers in peptides and proteins.
    Carroll L; Pattison DI; Davies JB; Anderson RF; Lopez-Alarcon C; Davies MJ
    Free Radic Biol Med; 2017 Dec; 113():132-142. PubMed ID: 28962874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substrates and products of eosinophil peroxidase.
    van Dalen CJ; Kettle AJ
    Biochem J; 2001 Aug; 358(Pt 1):233-9. PubMed ID: 11485572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New insights into thiocyanate oxidation by human myeloperoxidase.
    Schlorke D; Flemmig J; Gau J; Furtmüller PG; Obinger C; Arnhold J
    J Inorg Biochem; 2016 Sep; 162():117-126. PubMed ID: 27343172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eosinophil peroxidase oxidation of thiocyanate. Characterization of major reaction products and a potential sulfhydryl-targeted cytotoxicity system.
    Arlandson M; Decker T; Roongta VA; Bonilla L; Mayo KH; MacPherson JC; Hazen SL; Slungaard A
    J Biol Chem; 2001 Jan; 276(1):215-24. PubMed ID: 11013238
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products.
    Carroll L; Pattison DI; Davies JB; Anderson RF; Lopez-Alarcon C; Davies MJ
    Free Radic Biol Med; 2018 Apr; 118():126-136. PubMed ID: 29496618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase.
    Wever R; Kast WM; Kasinoedin JH; Boelens R
    Biochim Biophys Acta; 1982 Dec; 709(2):212-9. PubMed ID: 6295491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction.
    Abdo AI; Rayner BS; van Reyk DM; Hawkins CL
    Redox Biol; 2017 Oct; 13():623-632. PubMed ID: 28818791
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The thiocyanate analog selenocyanate is a more potent antimicrobial pro-drug that also is selectively detoxified by the host.
    Day BJ; Bratcher PE; Chandler JD; Kilgore MB; Min E; LiPuma JJ; Hondal RJ; Nichols DP
    Free Radic Biol Med; 2020 Jan; 146():324-332. PubMed ID: 31740228
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acidic aqueous decomposition of thiocyanogen.
    Barnett JJ; McKee ML; Stanbury DM
    Inorg Chem; 2004 Aug; 43(16):5021-33. PubMed ID: 15285679
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidation of caspase-8 by hypothiocyanous acid enables TNF-mediated necroptosis.
    Bozonet SM; Magon NJ; Schwartfeger AJ; Konigstorfer A; Heath SG; Vissers MCM; Morris VK; Göbl C; Murphy JM; Salvesen GS; Hampton MB
    J Biol Chem; 2023 Jun; 299(6):104792. PubMed ID: 37150321
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Glutathione utilization protects Streptococcus pneumoniae against lactoperoxidase-derived hypothiocyanous acid.
    Shearer HL; Paton JC; Hampton MB; Dickerhof N
    Free Radic Biol Med; 2022 Feb; 179():24-33. PubMed ID: 34923101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidation of human plasma fibronectin by inflammatory oxidants perturbs endothelial cell function.
    Vanichkitrungruang S; Chuang CY; Hawkins CL; Hammer A; Hoefler G; Malle E; Davies MJ
    Free Radic Biol Med; 2019 May; 136():118-134. PubMed ID: 30959171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.