These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25172695)

  • 1. Effective stabilization of CLA by microencapsulation in pea protein.
    Costa AM; Nunes JC; Lima BN; Pedrosa C; Calado V; Torres AG; Pierucci AP
    Food Chem; 2015 Feb; 168():157-66. PubMed ID: 25172695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector.
    Pierucci AP; Andrade LR; Baptista EB; Volpato NM; Rocha-Leão MH
    J Microencapsul; 2006 Sep; 23(6):654-62. PubMed ID: 17118881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of alpha-tocopherol microparticles produced with different wall materials: pea protein a new interesting alternative.
    Pierucci AP; Andrade LR; Farina M; Pedrosa C; Rocha-Leão MH
    J Microencapsul; 2007 May; 24(3):201-13. PubMed ID: 17454432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil.
    Bajaj PR; Bhunia K; Kleiner L; Joyner Melito HS; Smith D; Ganjyal G; Sablani SS
    J Microencapsul; 2017 Mar; 34(2):218-230. PubMed ID: 28393603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and oxidative stability of the microencapsulated conjugated linoleic acid.
    Lee JS; Song YB; Lee JY; Kim MK; Jun SJ; Lee HG
    Int J Biol Macromol; 2009 Nov; 45(4):348-51. PubMed ID: 19665477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The porosity of carbohydrate-based spray-dried microparticles containing limonene stabilized by pea protein: Correlation between porosity and oxidative stability.
    Francisco CRL; Paulo BB; De Oliveira Júnior FD; Pereira APA; Pastore GM; Prata AS; Alvim ID; Hubinger MD
    Curr Res Food Sci; 2022; 5():878-885. PubMed ID: 35647558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partition of volatile compounds in pea globulin-maltodextrin aqueous two-phase system.
    Nguyen TD; Lafarge C; Murat C; Mession JL; Cayot N; Saurel R
    Food Chem; 2014 Dec; 164():406-12. PubMed ID: 24996351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microencapsulation of fish oil by casein-pectin complexes and gum arabic microparticles: oxidative stabilisation.
    Vaucher ACDS; Dias PCM; Coimbra PT; Costa IDSM; Marreto RN; Dellamora-Ortiz GM; De Freitas O; Ramos MFS
    J Microencapsul; 2019 Aug; 36(5):459-473. PubMed ID: 31322456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pea soluble polysaccharides obtained from two enzyme-assisted extraction methods and their application as acidified milk drinks stabilizers.
    Cheng M; Qi JR; Feng JL; Cao J; Wang JM; Yang XQ
    Food Res Int; 2018 Jul; 109():544-551. PubMed ID: 29803482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum) and cowpea protein isolate.
    Rangel A; Domont GB; Pedrosa C; Ferreira ST
    J Agric Food Chem; 2003 Sep; 51(19):5792-7. PubMed ID: 12952435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microencapsulation of borage oil with blends of milk protein, β-glucan and maltodextrin through spray drying: physicochemical characteristics and stability of the microcapsules.
    Li RY; Shi Y
    J Sci Food Agric; 2018 Feb; 98(3):896-904. PubMed ID: 28686292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing storage stability of pea peptides through encapsulation in maltodextrin and gum tragacanth via monitoring scavenge ability to free radicals.
    Liu KK; Liu HR; Wen L; Xu Z; Ding L; Cheng YH; Chen ML
    Int J Biol Macromol; 2024 Sep; 276(Pt 1):133736. PubMed ID: 38992543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method.
    Karrar E; Mahdi AA; Sheth S; Mohamed Ahmed IA; Manzoor MF; Wei W; Wang X
    Int J Biol Macromol; 2021 Feb; 171():208-216. PubMed ID: 33310099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of the microencapsulation of lavender oil by spray drying.
    Burhan AM; Abdel-Hamid SM; Soliman ME; Sammour OA
    J Microencapsul; 2019 May; 36(3):250-266. PubMed ID: 31099280
    [No Abstract]   [Full Text] [Related]  

  • 15. Drying method determines the structure and the solubility of microfluidized pea globulin aggregates.
    Oliete B; Yassine SA; Cases E; Saurel R
    Food Res Int; 2019 May; 119():444-454. PubMed ID: 30884676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microencapsulation of
    Osamede Airouyuwa J; Kaewmanee T
    Food Sci Technol Int; 2019 Sep; 25(6):533-543. PubMed ID: 31014107
    [No Abstract]   [Full Text] [Related]  

  • 17. Pea protein provides a promising matrix for microencapsulating iron.
    Bittencourt LL; Pedrosa C; Sousa VP; Pierucci AP; Citelli M
    Plant Foods Hum Nutr; 2013 Dec; 68(4):333-9. PubMed ID: 23990387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative modifications of conjugated and unconjugated linoleic acid during heating.
    Giua L; Blasi F; Simonetti MS; Cossignani L
    Food Chem; 2013 Oct; 140(4):680-5. PubMed ID: 23692753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pea protein isolate-soluble soybean polysaccharides electrostatic assembly: effect of pH, biopolymer mass ratio and heat treatment.
    Igartúa DE; Balcone A; Platania FA; Cabezas DM; Palazolo GG
    J Sci Food Agric; 2024 Sep; 104(12):7291-7300. PubMed ID: 38647043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microencapsulation of an indigenous isolate of
    Eski A; Demirbağ Z; Demir İ
    J Microencapsul; 2019 Jan; 36(1):1-9. PubMed ID: 30836029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.