These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 25172825)
21. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. Alexopoulos LG; Haider MA; Vail TP; Guilak F J Biomech Eng; 2003 Jun; 125(3):323-33. PubMed ID: 12929236 [TBL] [Abstract][Full Text] [Related]
22. Vibrational spectroscopic monitoring and biochemical analysis of pericellular matrix formation and maturation in a 3-dimensional chondrocyte culture model. Owida HA; Rutter AV; Cinque G; Kuiper NJ; Sulé-Suso J; Yang Y Analyst; 2018 Dec; 143(24):5979-5986. PubMed ID: 30310903 [TBL] [Abstract][Full Text] [Related]
23. Assessment of biomechanical properties of the extracellular and pericellular matrix and their interconnection throughout the course of osteoarthritis. Danalache M; Jacobi LF; Schwitalle M; Hofmann UK J Biomech; 2019 Dec; 97():109409. PubMed ID: 31629545 [TBL] [Abstract][Full Text] [Related]
24. Changes in stiffness and biochemical composition of the pericellular matrix as a function of spatial chondrocyte organisation in osteoarthritic cartilage. Danalache M; Kleinert R; Schneider J; Erler AL; Schwitalle M; Riester R; Traub F; Hofmann UK Osteoarthritis Cartilage; 2019 May; 27(5):823-832. PubMed ID: 30711608 [TBL] [Abstract][Full Text] [Related]
25. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy. McLeod MA; Wilusz RE; Guilak F J Biomech; 2013 Feb; 46(3):586-92. PubMed ID: 23062866 [TBL] [Abstract][Full Text] [Related]
26. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. Choi JB; Youn I; Cao L; Leddy HA; Gilchrist CL; Setton LA; Guilak F J Biomech; 2007; 40(12):2596-603. PubMed ID: 17397851 [TBL] [Abstract][Full Text] [Related]
27. Reproducing the Biomechanical Environment of the Chondrocyte for Cartilage Tissue Engineering. Statham P; Jones E; Jennings LM; Fermor HL Tissue Eng Part B Rev; 2022 Apr; 28(2):405-420. PubMed ID: 33726527 [TBL] [Abstract][Full Text] [Related]
28. Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis. Chery DR; Han B; Li Q; Zhou Y; Heo SJ; Kwok B; Chandrasekaran P; Wang C; Qin L; Lu XL; Kong D; Enomoto-Iwamoto M; Mauck RL; Han L Acta Biomater; 2020 Jul; 111():267-278. PubMed ID: 32428685 [TBL] [Abstract][Full Text] [Related]
29. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading. Kim E; Guilak F; Haider MA J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538 [TBL] [Abstract][Full Text] [Related]
30. Articular cartilage chondrons: form, function and failure. Poole CA J Anat; 1997 Jul; 191 ( Pt 1)(Pt 1):1-13. PubMed ID: 9279653 [TBL] [Abstract][Full Text] [Related]
31. Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus. Kwok B; Chandrasekaran P; Wang C; He L; Mauck RL; Dyment NA; Koyama E; Han L Acta Biomater; 2023 Sep; 168():235-251. PubMed ID: 37414114 [TBL] [Abstract][Full Text] [Related]
32. Decorin regulates cartilage pericellular matrix micromechanobiology. Chery DR; Han B; Zhou Y; Wang C; Adams SM; Chandrasekaran P; Kwok B; Heo SJ; Enomoto-Iwamoto M; Lu XL; Kong D; Iozzo RV; Birk DE; Mauck RL; Han L Matrix Biol; 2021 Feb; 96():1-17. PubMed ID: 33246102 [TBL] [Abstract][Full Text] [Related]
33. Chondrons and the pericellular matrix of chondrocytes. Zhang Z Tissue Eng Part B Rev; 2015 Jun; 21(3):267-77. PubMed ID: 25366980 [TBL] [Abstract][Full Text] [Related]
34. Co-culture of chondrons and mesenchymal stromal cells reduces the loss of collagen VI and improves extracellular matrix production. Owida HA; De Las Heras Ruiz T; Dhillon A; Yang Y; Kuiper NJ Histochem Cell Biol; 2017 Dec; 148(6):625-638. PubMed ID: 28821957 [TBL] [Abstract][Full Text] [Related]
35. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Wang C; Brisson BK; Terajima M; Li Q; Hoxha K; Han B; Goldberg AM; Sherry Liu X; Marcolongo MS; Enomoto-Iwamoto M; Yamauchi M; Volk SW; Han L Matrix Biol; 2020 Jan; 85-86():47-67. PubMed ID: 31655293 [TBL] [Abstract][Full Text] [Related]
36. Gene expression profiles of dynamically compressed single chondrocytes and chondrons. Wang QG; Magnay JL; Nguyen B; Thomas CR; Zhang Z; El Haj AJ; Kuiper NJ Biochem Biophys Res Commun; 2009 Feb; 379(3):738-42. PubMed ID: 19118531 [TBL] [Abstract][Full Text] [Related]
37. A proteomic approach for identification and localization of the pericellular components of chondrocytes. Zhang Z; Jin W; Beckett J; Otto T; Moed B Histochem Cell Biol; 2011 Aug; 136(2):153-62. PubMed ID: 21698479 [TBL] [Abstract][Full Text] [Related]
38. Application of Atomic Force Microscopy to Detect Early Osteoarthritis. Danalache M; Tiwari A; Sigwart V; Hofmann UK J Vis Exp; 2020 May; (159):. PubMed ID: 32510478 [TBL] [Abstract][Full Text] [Related]
39. Maintenance and Acceleration of Pericellular Matrix Formation within 3D Cartilage Cell Culture Models. Owida HA; Kuiper NL; Yang Y Cartilage; 2021 Dec; 13(2_suppl):847S-861S. PubMed ID: 31455088 [TBL] [Abstract][Full Text] [Related]
40. Role of pericellular matrix in development of a mechanically functional neocartilage. Graff RD; Kelley SS; Lee GM Biotechnol Bioeng; 2003 May; 82(4):457-64. PubMed ID: 12632402 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]