These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 25172825)
41. A numerical study to determine pericellular matrix modulus and evaluate its effects on the micromechanical environment of chondrocytes. Michalek AJ; Iatridis JC J Biomech; 2007; 40(6):1405-9. PubMed ID: 16867304 [TBL] [Abstract][Full Text] [Related]
42. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. Khoshgoftar M; Torzilli PA; Maher SA J Orthop Res; 2018 Feb; 36(2):721-729. PubMed ID: 29044742 [TBL] [Abstract][Full Text] [Related]
43. Molecular Engineering of Pericellular Microniche Kahle ER; Han B; Chandrasekaran P; Phillips ER; Mulcahey MK; Lu XL; Marcolongo MS; Han L ACS Nano; 2022 Jan; 16(1):1220-1230. PubMed ID: 35015500 [TBL] [Abstract][Full Text] [Related]
44. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Youn I; Choi JB; Cao L; Setton LA; Guilak F Osteoarthritis Cartilage; 2006 Sep; 14(9):889-97. PubMed ID: 16626979 [TBL] [Abstract][Full Text] [Related]
45. Metabolomic Profiling and Mechanotransduction of Single Chondrocytes Encapsulated in Alginate Microgels. Fredrikson JP; Brahmachary PP; Erdoğan AE; Archambault ZK; Wilking JN; June RK; Chang CB Cells; 2022 Mar; 11(5):. PubMed ID: 35269522 [TBL] [Abstract][Full Text] [Related]
46. Increased metabolism of collagen VI in canine osteoarthritis. Arican M; Carter SD; Bennett D; Ross G; Ayad S J Comp Pathol; 1996 Apr; 114(3):249-56. PubMed ID: 8762582 [TBL] [Abstract][Full Text] [Related]
47. Chondrocyte death after mechanically overloading degenerated human intervertebral disk explants is associated with a structurally impaired pericellular matrix. Hofmann UK; Steidle J; Danalache M; Bonnaire F; Walter C; Rolauffs B J Tissue Eng Regen Med; 2018 Sep; 12(9):2000-2010. PubMed ID: 30053767 [TBL] [Abstract][Full Text] [Related]
48. Knockdown of the pericellular matrix molecule perlecan lowers in situ cell and matrix stiffness in developing cartilage. Xu X; Li Z; Leng Y; Neu CP; Calve S Dev Biol; 2016 Oct; 418(2):242-7. PubMed ID: 27578148 [TBL] [Abstract][Full Text] [Related]
49. Enzymatic Isolation of Articular Chondrons: Is It Much Different Than That of Chondrocytes? van Mourik M; Schuiringa GH; Varion-Verhagen LP; Vonk LA; van Donkelaar CC; Ito K; Foolen J Tissue Eng Part C Methods; 2023 Jan; 29(1):30-40. PubMed ID: 36576016 [TBL] [Abstract][Full Text] [Related]
51. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. Vincent TL; McLean CJ; Full LE; Peston D; Saklatvala J Osteoarthritis Cartilage; 2007 Jul; 15(7):752-63. PubMed ID: 17368052 [TBL] [Abstract][Full Text] [Related]
52. [Research on pericellular matrix properties for chondrcytes]. Han JL; Duan WP; Shi GH; Yuan W; Wei XC Zhongguo Gu Shang; 2015 Jun; 28(6):576-9. PubMed ID: 26255489 [TBL] [Abstract][Full Text] [Related]
53. Site-specific glycosaminoglycan content is better maintained in the pericellular matrix than the extracellular matrix in early post-traumatic osteoarthritis. Ojanen SP; Finnilä MAJ; Reunamo AE; Ronkainen AP; Mikkonen S; Herzog W; Saarakkala S; Korhonen RK PLoS One; 2018; 13(4):e0196203. PubMed ID: 29694389 [TBL] [Abstract][Full Text] [Related]
54. Identification of distinct metabolic pools of aggrecan and their relationship to type VI collagen in the chondrons of mature bovine articular cartilage explants. Winter GM; Poole CA; Ilic MZ; Ross JM; Robinson HC; Handley CJ Connect Tissue Res; 1998; 37(3-4):277-93. PubMed ID: 9862227 [TBL] [Abstract][Full Text] [Related]
55. Cracking the Pericellular Matrix Code: Exploring how MMP-2, -3, and -7 influence matrix breakdown and biomechanical properties. Baumann BT; Nieuwstraten J; Konrads C; Guilak F; Danalache M Osteoarthritis Cartilage; 2024 Sep; ():. PubMed ID: 39322008 [TBL] [Abstract][Full Text] [Related]
56. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology. Felka T; Rothdiener M; Bast S; Uynuk-Ool T; Zouhair S; Ochs BG; De Zwart P; Stoeckle U; Aicher WK; Hart ML; Shiozawa T; Grodzinsky AJ; Schenke-Layland K; Venkatesan JK; Cucchiarini M; Madry H; Kurz B; Rolauffs B Osteoarthritis Cartilage; 2016 Jul; 24(7):1200-9. PubMed ID: 26879798 [TBL] [Abstract][Full Text] [Related]
57. Encapsulation of chondrocytes in high-stiffness agarose microenvironments for in vitro modeling of osteoarthritis mechanotransduction. Jutila AA; Zignego DL; Schell WJ; June RK Ann Biomed Eng; 2015 May; 43(5):1132-44. PubMed ID: 25395215 [TBL] [Abstract][Full Text] [Related]
58. Biomechanical properties and mechanobiology of the articular chondrocyte. Chen C; Tambe DT; Deng L; Yang L Am J Physiol Cell Physiol; 2013 Dec; 305(12):C1202-8. PubMed ID: 24067919 [TBL] [Abstract][Full Text] [Related]
59. The Protective Function of Directed Asymmetry in the Pericellular Matrix Enveloping Chondrocytes. Sibole SC; Moo EK; Federico S; Herzog W Ann Biomed Eng; 2022 Jan; 50(1):39-55. PubMed ID: 34993700 [TBL] [Abstract][Full Text] [Related]
60. Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. Sanchez-Adams J; Wilusz RE; Guilak F J Orthop Res; 2013 Aug; 31(8):1218-25. PubMed ID: 23568545 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]