BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25172959)

  • 21. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae.
    Magwene PM; Kayıkçı Ö; Granek JA; Reininga JM; Scholl Z; Murray D
    Proc Natl Acad Sci U S A; 2011 Feb; 108(5):1987-92. PubMed ID: 21245305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Haploids adapt faster than diploids across a range of environments.
    Gerstein AC; Cleathero LA; Mandegar MA; Otto SP
    J Evol Biol; 2011 Mar; 24(3):531-40. PubMed ID: 21159002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The genomic landscape of compensatory evolution.
    Szamecz B; Boross G; Kalapis D; Kovács K; Fekete G; Farkas Z; Lázár V; Hrtyan M; Kemmeren P; Groot Koerkamp MJ; Rutkai E; Holstege FC; Papp B; Pál C
    PLoS Biol; 2014 Aug; 12(8):e1001935. PubMed ID: 25157590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sex drives intracellular conflict in yeast.
    Harrison E; MacLean RC; Koufopanou V; Burt A
    J Evol Biol; 2014 Aug; 27(8):1757-63. PubMed ID: 24825743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae.
    Fisher KJ; Buskirk SW; Vignogna RC; Marad DA; Lang GI
    PLoS Genet; 2018 May; 14(5):e1007396. PubMed ID: 29799840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The underlying structure of adaptation under strong selection in 12 experimental yeast populations.
    Kohn LM; Anderson JB
    Eukaryot Cell; 2014 Sep; 13(9):1200-6. PubMed ID: 25016004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.
    Payen C; Di Rienzi SC; Ong GT; Pogachar JL; Sanchez JC; Sunshine AB; Raghuraman MK; Brewer BJ; Dunham MJ
    G3 (Bethesda); 2014 Mar; 4(3):399-409. PubMed ID: 24368781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overdominant and partially dominant mutations drive clonal adaptation in diploid Saccharomyces cerevisiae.
    Aggeli D; Marad DA; Liu X; Buskirk SW; Levy SF; Lang GI
    Genetics; 2022 May; 221(2):. PubMed ID: 35435209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What drives parallel evolution?: How population size and mutational variation contribute to repeated evolution.
    Bailey SF; Blanquart F; Bataillon T; Kassen R
    Bioessays; 2017 Jan; 39(1):1-9. PubMed ID: 27859467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential paralog divergence modulates genome evolution across yeast species.
    Sanchez MR; Miller AW; Liachko I; Sunshine AB; Lynch B; Huang M; Alcantara E; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    PLoS Genet; 2017 Feb; 13(2):e1006585. PubMed ID: 28196070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental evolution reveals natural selection on standing genetic variation.
    Teotónio H; Chelo IM; Bradić M; Rose MR; Long AD
    Nat Genet; 2009 Feb; 41(2):251-7. PubMed ID: 19136954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular specificity, convergence and constraint shape adaptive evolution in nutrient-poor environments.
    Hong J; Gresham D
    PLoS Genet; 2014 Jan; 10(1):e1004041. PubMed ID: 24415948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of evolving populations of Saccharomyces cerevisiae: adaptive changes are frequently associated with sequence alterations involving mobile elements belonging to the Ty family.
    Adams J; Oeller PW
    Proc Natl Acad Sci U S A; 1986 Sep; 83(18):7124-7. PubMed ID: 3018758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptic fitness advantage: diploids invade haploid populations despite lacking any apparent advantage as measured by standard fitness assays.
    Gerstein AC; Otto SP
    PLoS One; 2011; 6(12):e26599. PubMed ID: 22174734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diploidy and the selective advantage for sexual reproduction in unicellular organisms.
    Kleiman M; Tannenbaum E
    Theory Biosci; 2009 Nov; 128(4):249-85. PubMed ID: 19902285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations.
    Frenkel EM; Good BH; Desai MM
    Genetics; 2014 Apr; 196(4):1217-26. PubMed ID: 24514901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clear: Composition of Likelihoods for Evolve and Resequence Experiments.
    Iranmehr A; Akbari A; Schlötterer C; Bafna V
    Genetics; 2017 Jun; 206(2):1011-1023. PubMed ID: 28396506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Budding yeast as a model organism for population genetics.
    Zeyl C
    Yeast; 2000 Jun; 16(8):773-84. PubMed ID: 10861902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae.
    Borneman AR; Desany BA; Riches D; Affourtit JP; Forgan AH; Pretorius IS; Egholm M; Chambers PJ
    PLoS Genet; 2011 Feb; 7(2):e1001287. PubMed ID: 21304888
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
    Kryazhimskiy S; Rice DP; Jerison ER; Desai MM
    Science; 2014 Jun; 344(6191):1519-1522. PubMed ID: 24970088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.