BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25172959)

  • 41. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
    Kryazhimskiy S; Rice DP; Jerison ER; Desai MM
    Science; 2014 Jun; 344(6191):1519-1522. PubMed ID: 24970088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast.
    Smukowski Heil CS; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    Mol Biol Evol; 2017 Jul; 34(7):1596-1612. PubMed ID: 28369610
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
    Gresham D; Desai MM; Tucker CM; Jenq HT; Pai DA; Ward A; DeSevo CG; Botstein D; Dunham MJ
    PLoS Genet; 2008 Dec; 4(12):e1000303. PubMed ID: 19079573
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes.
    Bernatchez L
    J Fish Biol; 2016 Dec; 89(6):2519-2556. PubMed ID: 27687146
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genomics of Parallel Experimental Evolution in Drosophila.
    Graves JL; Hertweck KL; Phillips MA; Han MV; Cabral LG; Barter TT; Greer LF; Burke MK; Mueller LD; Rose MR
    Mol Biol Evol; 2017 Apr; 34(4):831-842. PubMed ID: 28087779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genealogy-based methods for inference of historical recombination and gene flow and their application in Saccharomyces cerevisiae.
    Jenkins PA; Song YS; Brem RB
    PLoS One; 2012; 7(11):e46947. PubMed ID: 23226196
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations.
    Jha AR; Zhou D; Brown CD; Kreitman M; Haddad GG; White KP
    Mol Biol Evol; 2016 Feb; 33(2):501-17. PubMed ID: 26576852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae.
    Oud B; Guadalupe-Medina V; Nijkamp JF; de Ridder D; Pronk JT; van Maris AJ; Daran JM
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):E4223-31. PubMed ID: 24145419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations.
    Johnson MS; Gopalakrishnan S; Goyal J; Dillingham ME; Bakerlee CW; Humphrey PT; Jagdish T; Jerison ER; Kosheleva K; Lawrence KR; Min J; Moulana A; Phillips AM; Piper JC; Purkanti R; Rego-Costa A; McDonald MJ; Nguyen Ba AN; Desai MM
    Elife; 2021 Jan; 10():. PubMed ID: 33464204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The advantage of sex in evolving yeast populations.
    Zeyl C; Bell G
    Nature; 1997 Jul; 388(6641):465-8. PubMed ID: 9242403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution.
    Dhar R; Sägesser R; Weikert C; Yuan J; Wagner A
    J Evol Biol; 2011 May; 24(5):1135-53. PubMed ID: 21375649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detecting genetic interactions using parallel evolution in experimental populations.
    Fisher KJ; Kryazhimskiy S; Lang GI
    Philos Trans R Soc Lond B Biol Sci; 2019 Jul; 374(1777):20180237. PubMed ID: 31154981
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A short history of recombination in yeast.
    Zeyl CW; Otto SP
    Trends Ecol Evol; 2007 May; 22(5):223-5. PubMed ID: 17296245
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae).
    Mable BK; Otto SP
    Genet Res; 2001 Feb; 77(1):9-26. PubMed ID: 11279834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation.
    Dhar R; Sägesser R; Weikert C; Wagner A
    Mol Biol Evol; 2013 Mar; 30(3):573-88. PubMed ID: 23125229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Population subdivision and adaptation in asexual populations of Saccharomyces cerevisiae.
    Kryazhimskiy S; Rice DP; Desai MM
    Evolution; 2012 Jun; 66(6):1931-41. PubMed ID: 22671557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sex speeds adaptation by altering the dynamics of molecular evolution.
    McDonald MJ; Rice DP; Desai MM
    Nature; 2016 Mar; 531(7593):233-6. PubMed ID: 26909573
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The genetic basis of differential autodiploidization in evolving yeast populations.
    Tung S; Bakerlee CW; Phillips AM; Nguyen Ba AN; Desai MM
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation.
    Voordeckers K; Verstrepen KJ
    Curr Opin Microbiol; 2015 Dec; 28():1-9. PubMed ID: 26202939
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae.
    Anderson JB; Sirjusingh C; Ricker N
    Genetics; 2004 Dec; 168(4):1915-23. PubMed ID: 15371350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.