These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Quantum dynamical structure factor of liquid neon via a quasiclassical symmetrized method. Monteferrante M; Bonella S; Ciccotti G J Chem Phys; 2013 Feb; 138(5):054118. PubMed ID: 23406109 [TBL] [Abstract][Full Text] [Related]
3. Sampling the thermal Wigner density via a generalized Langevin dynamics. Plé T; Huppert S; Finocchi F; Depondt P; Bonella S J Chem Phys; 2019 Sep; 151(11):114114. PubMed ID: 31542021 [TBL] [Abstract][Full Text] [Related]
4. Coherent State-Based Path Integral Methodology for Computing the Wigner Phase Space Distribution. Bose A; Makri N J Phys Chem A; 2019 May; 123(19):4284-4294. PubMed ID: 30986061 [TBL] [Abstract][Full Text] [Related]
5. Path integral based calculations of symmetrized time correlation functions. II. Bonella S; Monteferrante M; Pierleoni C; Ciccotti G J Chem Phys; 2010 Oct; 133(16):164105. PubMed ID: 21033773 [TBL] [Abstract][Full Text] [Related]
6. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions. Cendagorta JR; Bačić Z; Tuckerman ME J Chem Phys; 2018 Mar; 148(10):102340. PubMed ID: 29544313 [TBL] [Abstract][Full Text] [Related]
8. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy. Basire M; Borgis D; Vuilleumier R Phys Chem Chem Phys; 2013 Aug; 15(30):12591-601. PubMed ID: 23783066 [TBL] [Abstract][Full Text] [Related]
9. Wigner phase space distribution via classical adiabatic switching. Bose A; Makri N J Chem Phys; 2015 Sep; 143(11):114114. PubMed ID: 26395694 [TBL] [Abstract][Full Text] [Related]
10. A new class of ensemble conserving algorithms for approximate quantum dynamics: Theoretical formulation and model problems. Smith KK; Poulsen JA; Nyman G; Rossky PJ J Chem Phys; 2015 Jun; 142(24):244112. PubMed ID: 26133415 [TBL] [Abstract][Full Text] [Related]
11. Wigner Distribution by Adiabatic Switching in Normal Mode or Cartesian Coordinates and Molecular Applications. Bose A; Makri N J Chem Theory Comput; 2018 Nov; 14(11):5446-5458. PubMed ID: 30346773 [TBL] [Abstract][Full Text] [Related]
12. A variational principle in Wigner phase-space with applications to statistical mechanics. Poulsen JA J Chem Phys; 2011 Jan; 134(3):034118. PubMed ID: 21261341 [TBL] [Abstract][Full Text] [Related]
13. Path integral Liouville dynamics for thermal equilibrium systems. Liu J J Chem Phys; 2014 Jun; 140(22):224107. PubMed ID: 24929374 [TBL] [Abstract][Full Text] [Related]
14. Accurate vibrational-rotational partition functions and standard-state free energy values for H2O2 from Monte Carlo path-integral calculations. Lynch VA; Mielke SL; Truhlar DG J Chem Phys; 2004 Sep; 121(11):5148-62. PubMed ID: 15352807 [TBL] [Abstract][Full Text] [Related]
15. Path-integral approach to the Wigner-Kirkwood expansion. Jizba P; Zatloukal V Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012135. PubMed ID: 24580200 [TBL] [Abstract][Full Text] [Related]
16. Path integral density matrix dynamics: a method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems. Habershon S J Chem Phys; 2013 Sep; 139(10):104107. PubMed ID: 24050328 [TBL] [Abstract][Full Text] [Related]
17. Efficient methods for including quantum effects in Monte Carlo calculations of large systems: extension of the displaced points path integral method and other effective potential methods to calculate properties and distributions. Mielke SL; Dinpajooh M; Siepmann JI; Truhlar DG J Chem Phys; 2013 Jan; 138(1):014110. PubMed ID: 23298031 [TBL] [Abstract][Full Text] [Related]
18. Off-diagonal expansion quantum Monte Carlo. Albash T; Wagenbreth G; Hen I Phys Rev E; 2017 Dec; 96(6-1):063309. PubMed ID: 29347413 [TBL] [Abstract][Full Text] [Related]
19. Real time correlation function in a single phase space integral beyond the linearized semiclassical initial value representation. Liu J; Miller WH J Chem Phys; 2007 Jun; 126(23):234110. PubMed ID: 17600407 [TBL] [Abstract][Full Text] [Related]