These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25173007)

  • 1. Reference hypernetted chain theory for ferrofluid bilayer: distribution functions compared with Monte Carlo.
    Polyakov EA; Vorontsov-Velyaminov PN
    J Chem Phys; 2014 Aug; 141(8):084109. PubMed ID: 25173007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuations in a ferrofluid monolayer: an integral equation study.
    Luo L; Klapp SH
    J Chem Phys; 2009 Jul; 131(3):034709. PubMed ID: 19624223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of highly asymmetric hard-sphere mixtures: an efficient closure of the Ornstein-Zernike equations.
    Amokrane S; Ayadim A; Malherbe JG
    J Chem Phys; 2005 Nov; 123(17):174508. PubMed ID: 16375547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and thermodynamics of a ferrofluid bilayer.
    Alvarez C; Mazars M; Weis JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051501. PubMed ID: 18643068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic structure and thermodynamics of a core-softened model fluid: insights from grand canonical Monte Carlo simulations and integral equations theory.
    Pizio O; Dominguez H; Duda Y; Sokołowski S
    J Chem Phys; 2009 May; 130(17):174504. PubMed ID: 19425787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimum free energy in the reference functional approach for the integral equations theory.
    Ayadim A; Oettel M; Amokrane S
    J Phys Condens Matter; 2009 Mar; 21(11):115103. PubMed ID: 21693909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing a new closure theory based on the third-order Ornstein-Zernike equation and a study of the adsorption of simple fluids.
    Lee LL
    J Chem Phys; 2011 Nov; 135(20):204706. PubMed ID: 22128951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical and numerical investigations of inverse patchy colloids in the fluid phase.
    Kalyuzhnyi YV; Bianchi E; Ferrari S; Kahl G
    J Chem Phys; 2015 Mar; 142(11):114108. PubMed ID: 25796232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and thermodynamics of a ferrofluid monolayer.
    Lomba E; Lado F; Weis JJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3838-49. PubMed ID: 11088163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integral equation theory for fluids ordered by an external field: separable interactions.
    Perera A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2912-29. PubMed ID: 11970096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closure for the Ornstein-Zernike equation with pressure and free energy consistency.
    Tsednee T; Luchko T
    Phys Rev E; 2019 Mar; 99(3-1):032130. PubMed ID: 30999429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of a Hard Sphere Fluid in Disordered Microporous Quenched Matrix of Short Chain Molecules: Integral Equations and Grand Canonical Monte Carlo Simulations.
    Malo BM; Pizio O; Trokhymchuk A; Duda Y
    J Colloid Interface Sci; 1999 Mar; 211(2):387-394. PubMed ID: 10049555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced density profile of small particles near a large particle: Results of an integral equation theory with an accurate bridge function and a Monte Carlo simulation.
    Nakamura Y; Arai S; Kinoshita M; Yoshimori A; Akiyama R
    J Chem Phys; 2019 Jul; 151(4):044506. PubMed ID: 31370562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact molecular direct, cavity, and bridge functions in water system.
    Belloni L
    J Chem Phys; 2017 Oct; 147(16):164121. PubMed ID: 29096488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From square-well to Janus: improved algorithm for integral equation theory and comparison with thermodynamic perturbation theory within the Kern-Frenkel model.
    Giacometti A; Gögelein C; Lado F; Sciortino F; Ferrari S; Pastore G
    J Chem Phys; 2014 Mar; 140(9):094104. PubMed ID: 24606350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the Replica Ornstein-Zernike Equations to Study Submonolayer Adsorption on Energetically Heterogeneous Surfaces.
    Rzysko W; Pizio O; Sokolowski S; Sokolowska Z
    J Colloid Interface Sci; 1999 Nov; 219(1):184-189. PubMed ID: 10527586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of molecular liquids: cavity and bridge functions of the hard spheroid fluid.
    Cheung DL; Anton L; Allen MP; Masters AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061204. PubMed ID: 16906815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of a diatomic molecular fluid into random porous media.
    Fernaud MJ; Lomba E; Weis JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051501. PubMed ID: 11735923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local structures of fluid with discrete spherical potential: Theory and grand canonical ensemble Monte Carlo simulation.
    Zhou S; Lajovic A; Jamnik A
    J Chem Phys; 2008 Sep; 129(12):124503. PubMed ID: 19045032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of mean force in confined colloids: integral equations with fundamental measure bridge functions.
    Ayadim A; Malherbe JG; Amokrane S
    J Chem Phys; 2005 Jun; 122(23):234908. PubMed ID: 16008488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.