These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25173019)

  • 41. Nonlinear electrical effects in lipid bilayer membranes. I. Ion injection.
    Walz D; Bamberg E; Läuger P
    Biophys J; 1969 Sep; 9(9):1150-9. PubMed ID: 5807222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model.
    Dione I; Doyon N; Deteix J
    J Math Biol; 2019 Jan; 78(1-2):21-56. PubMed ID: 30187223
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frequency-Dependent Dielectric Permittivity in Poisson-Nernst-Planck Model.
    Rosseto MP; Evangelista LR; Lenzi EK; Zola RS; Ribeiro de Almeida RR
    J Phys Chem B; 2022 Sep; 126(34):6446-6453. PubMed ID: 35984722
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polarizable Poisson-Boltzmann equation: the study of polarizability effects on the structure of a double layer.
    Frydel D
    J Chem Phys; 2011 Jun; 134(23):234704. PubMed ID: 21702573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of space charge on the ionic currents through biological membranes.
    Ruppersberg JP; Rüdel R
    J Theor Biol; 1988 Feb; 130(4):431-45. PubMed ID: 2460705
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An improved Poisson-Nernst-Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations.
    Chao Z; Xie D
    J Comput Chem; 2021 Oct; 42(27):1929-1943. PubMed ID: 34382702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Poisson's effects in electrical field flow fractionation.
    Biernacki JJ; Mellacheruvu PM; Mahajan SM
    J Sep Sci; 2008 Jul; 31(12):2219-30. PubMed ID: 18615827
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A computational study of ion conductance in the KcsA K(+) channel using a Nernst-Planck model with explicit resident ions.
    Jung YW; Lu B; Mascagni M
    J Chem Phys; 2009 Dec; 131(21):215101. PubMed ID: 19968368
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo.
    Matejczyk B; Valiskó M; Wolfram MT; Pietschmann JF; Boda D
    J Chem Phys; 2017 Mar; 146(12):124125. PubMed ID: 28388126
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A perturbation solution to the full Poisson-Nernst-Planck equations yields an asymmetric rectified electric field.
    Hashemi A; Miller GH; Bishop KJM; Ristenpart WD
    Soft Matter; 2020 Aug; 16(30):7052-7062. PubMed ID: 32648566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electric impedance of a sample of dielectric liquid containing two groups of ions limited by ohmic electrodes: a study with pure water.
    Duarte AR; Batalioto F; Barbero G; Neto AM
    J Phys Chem B; 2013 Mar; 117(10):2985-91. PubMed ID: 23421408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal speciation in a complexing soft film layer: a theoretical dielectric relaxation study of coupled chemodynamic and electrodynamic interfacial processes.
    Merlin J; Duval JF
    Phys Chem Chem Phys; 2012 Apr; 14(13):4491-504. PubMed ID: 22370713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of self-electrophoretic motion of a spherical particle in a nanotube: effect of nonuniform surface charge density.
    Qian S; Joo SW
    Langmuir; 2008 May; 24(9):4778-84. PubMed ID: 18366230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ions and nematic surface energy: beyond the exponential approximation for the electric field of ionic origin.
    Barbero G; Olivero D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031701. PubMed ID: 11909075
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical simulation of the ion current rectification (ICR) in nano-pores based on the Poisson-Nernst-Planck (PNP) model.
    Wang J; Zhang M; Zhai J; Jiang L
    Phys Chem Chem Phys; 2014 Jan; 16(1):23-32. PubMed ID: 24253284
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Numerical prediction of ac electro-osmotic flows around polarized electrodes.
    Suh YK; Kang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046309. PubMed ID: 19518335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of ion concentration, solution and membrane permittivity on electric energy storage and capacitance.
    Tajparast M; Glavinović MI
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2385-2403. PubMed ID: 29885295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.
    Wang XS; He D; Wylie JJ; Huang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022722. PubMed ID: 25353523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.