These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 25173058)
1. A short-term laboratory and in situ sediment assay based on the postexposure feeding of the estuarine isopod Cyathura carinata. Martinez-Haro M; Moreira-Santos M; Marques JC; Ribeiro R Environ Res; 2014 Oct; 134():242-50. PubMed ID: 25173058 [TBL] [Abstract][Full Text] [Related]
2. Assessing estuarine quality: A cost-effective in situ assay with amphipods. Martinez-Haro M; Acevedo P; Pais-Costa AJ; Taggart MA; Martins I; Ribeiro R; Marques JC Environ Pollut; 2016 May; 212():382-391. PubMed ID: 26874320 [TBL] [Abstract][Full Text] [Related]
3. A short-term sublethal in situ sediment assay with Chironomus riparius based on postexposure feeding. Soares S; Cativa I; Moreira-Santos M; Soares AM; Ribeiro R Arch Environ Contam Toxicol; 2005 Aug; 49(2):163-72. PubMed ID: 16001149 [TBL] [Abstract][Full Text] [Related]
4. A short-term sublethal in situ toxicity assay with Hediste diversicolor (Polychaeta) for estuarine sediments based on postexposure feeding. Moreira SM; Moreira-Santos M; Guilhermino L; Ribeiro R Environ Toxicol Chem; 2005 Aug; 24(8):2010-8. PubMed ID: 16152974 [TBL] [Abstract][Full Text] [Related]
5. Effects of estuarine sediment contamination on feeding and on key physiological functions of the polychaete Hediste diversicolor: Laboratory and in situ assays. Moreira SM; Lima I; Ribeiro R; Guilhermino L Aquat Toxicol; 2006 Jun; 78(2):186-201. PubMed ID: 16621062 [TBL] [Abstract][Full Text] [Related]
6. An in situ postexposure feeding assay with Carcinus maenas for estuarine sediment-overlying water toxicity evaluations. Moreira SM; Moreira-Santos M; Guilhermino L; Ribeiro R Environ Pollut; 2006 Jan; 139(2):318-29. PubMed ID: 16002194 [TBL] [Abstract][Full Text] [Related]
7. Addressing the recovery of feeding rates in post-exposure feeding bioassays: Cyathura carinata as a case study. Pais-Costa AJ; Acevedo P; Marques JC; Martinez-Haro M Environ Res; 2015 Feb; 137():222-5. PubMed ID: 25576796 [TBL] [Abstract][Full Text] [Related]
8. A postexposure feeding assay using the marine polychaete Neanthes arenaceodentata suitable for laboratory and in situ exposures. Rosen G; Miller K Environ Toxicol Chem; 2011 Mar; 30(3):730-7. PubMed ID: 21298715 [TBL] [Abstract][Full Text] [Related]
9. An estuarine mudsnail in situ toxicity assay based on postexposure feeding. Krell B; Moreira-Santos M; Ribeiro R Environ Toxicol Chem; 2011 Aug; 30(8):1935-42. PubMed ID: 21590798 [TBL] [Abstract][Full Text] [Related]
10. A laboratory and in situ postexposure feeding assay with a freshwater snail. Correia V; Ribeiro R; Moreira-Santos M Environ Toxicol Chem; 2013 Sep; 32(9):2144-52. PubMed ID: 23733247 [TBL] [Abstract][Full Text] [Related]
11. A freshwater amphipod toxicity test based on postexposure feeding and the population consumption inhibitory concentration. Agostinho M; Moreira-Santos M; Ribeiro R Chemosphere; 2012 Mar; 87(1):43-8. PubMed ID: 22189376 [TBL] [Abstract][Full Text] [Related]
12. Sediment pollution in the Elbe estuary and its potential toxicity at different trophic levels. Wetzel MA; Wahrendorf DS; von der Ohe PC Sci Total Environ; 2013 Apr; 449():199-207. PubMed ID: 23428749 [TBL] [Abstract][Full Text] [Related]
13. The use of sediment toxicity identification evaluation methods to evaluate clean up targets in an urban estuary. Greenstein DJ; Bay SM; Young DL; Asato S; Maruya KA; Lao W Integr Environ Assess Manag; 2014 Apr; 10(2):260-8. PubMed ID: 24376177 [TBL] [Abstract][Full Text] [Related]
14. Effects of heavy metal contamination on the macrobenthic fauna in estuaries: the case of the Seine estuary. Dauvin JC Mar Pollut Bull; 2008; 57(1-5):160-9. PubMed ID: 18045624 [TBL] [Abstract][Full Text] [Related]
15. Application of postexposure feeding depression bioassays with Daphnia magna for assessment of toxic effluents in rivers. McWilliam RA; Baird DJ Environ Toxicol Chem; 2002 Jul; 21(7):1462-8. PubMed ID: 12109747 [TBL] [Abstract][Full Text] [Related]
16. An in situ assay with the microalga Phaeodactylum tricornutum for sediment-overlying water toxicity evaluations in estuaries. Moreira SM; Guilhermino L; Ribeiro R Environ Toxicol Chem; 2006 Sep; 25(9):2272-9. PubMed ID: 16986780 [TBL] [Abstract][Full Text] [Related]
17. Weight-of-evidence approach in assessment of ecotoxicological risks of acid sulphate soils in the Baltic Sea river estuaries. Wallin J; Karjalainen AK; Schultz E; Järvistö J; Leppänen M; Vuori KM Sci Total Environ; 2015 Mar; 508():452-61. PubMed ID: 25506908 [TBL] [Abstract][Full Text] [Related]
18. Effects of varying estuarine conditions on the sorption of phenanthrene to sediment particles of Yangtze Estuary. Shang J; Chen J; Shen Z; Wang Y; Ruan A Mar Pollut Bull; 2013 Nov; 76(1-2):139-45. PubMed ID: 24095203 [TBL] [Abstract][Full Text] [Related]
19. Integrated assessment of metal contamination in sediments from two tropical estuaries. Krull M; Abessa DM; Hatje V; Barros F Ecotoxicol Environ Saf; 2014 Aug; 106():195-203. PubMed ID: 24853133 [TBL] [Abstract][Full Text] [Related]
20. Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France). Baudrimont M; Schäfer J; Marie V; Maury-Brachet R; Bossy C; Boudou A; Blanc G Sci Total Environ; 2005 Jan; 337(1-3):265-80. PubMed ID: 15626396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]