BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25173413)

  • 21. When pros become cons for anti- versus prosaccades: factors with opposite or common effects on different saccade types.
    Kristjánsson A; Vandenbroucke MW; Driver J
    Exp Brain Res; 2004 Mar; 155(2):231-44. PubMed ID: 14661119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The unidirectional prosaccade switch-cost: correct and error antisaccades differentially influence the planning times for subsequent prosaccades.
    DeSimone JC; Weiler J; Aber GS; Heath M
    Vision Res; 2014 Mar; 96():17-24. PubMed ID: 24412739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual vector inversion during memory antisaccades--a TMS study.
    Nyffeler T; Hartmann M; Hess CW; Müri RM
    Prog Brain Res; 2008; 171():429-32. PubMed ID: 18718337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Event-related fMRI responses in the human frontal eye fields in a randomized pro- and antisaccade task.
    Cornelissen FW; Kimmig H; Schira M; Rutschmann RM; Maguire RP; Broerse A; Den Boer JA; Greenlee MW
    Exp Brain Res; 2002 Jul; 145(2):270-4. PubMed ID: 12110968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response selection in prosaccades, antisaccades, and other volitional saccades.
    Kloft L; Reuter B; Viswanathan J; Kathmann N; Barton JJ
    Exp Brain Res; 2012 Oct; 222(4):345-53. PubMed ID: 22910901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of aging on BOLD fMRI during prosaccades and antisaccades.
    Raemaekers M; Vink M; van den Heuvel MP; Kahn RS; Ramsey NF
    J Cogn Neurosci; 2006 Apr; 18(4):594-603. PubMed ID: 16768362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural correlates of proactive and reactive inhibition of saccadic eye movements.
    Talanow T; Kasparbauer AM; Lippold JV; Weber B; Ettinger U
    Brain Imaging Behav; 2020 Feb; 14(1):72-88. PubMed ID: 30298238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Where left becomes right: a magnetoencephalographic study of sensorimotor transformation for antisaccades.
    Moon SY; Barton JJ; Mikulski S; Polli FE; Cain MS; Vangel M; Hämäläinen MS; Manoach DS
    Neuroimage; 2007 Jul; 36(4):1313-23. PubMed ID: 17537647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trial-type probability and task-switching effects on behavioral response characteristics in a mixed saccade task.
    Pierce JE; McCardel JB; McDowell JE
    Exp Brain Res; 2015 Mar; 233(3):959-69. PubMed ID: 25537465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavioral evidence of separate adaptation mechanisms controlling saccade amplitude lengthening and shortening.
    Panouillères M; Weiss T; Urquizar C; Salemme R; Munoz DP; Pélisson D
    J Neurophysiol; 2009 Mar; 101(3):1550-9. PubMed ID: 19091922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural neural correlates of prosaccade and antisaccade eye movements in healthy humans.
    Ettinger U; Antonova E; Crawford TJ; Mitterschiffthaler MT; Goswani S; Sharma T; Kumari V
    Neuroimage; 2005 Jan; 24(2):487-94. PubMed ID: 15627590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Task-switching in oculomotor control: unidirectional switch-cost when alternating between pro- and antisaccades.
    Weiler J; Heath M
    Neurosci Lett; 2012 Nov; 530(2):150-4. PubMed ID: 23063688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation of reactive and voluntary saccades: different patterns of adaptation revealed in the antisaccade task.
    Cotti J; Panouilleres M; Munoz DP; Vercher JL; Pélisson D; Guillaume A
    J Physiol; 2009 Jan; 587(1):127-38. PubMed ID: 19015199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual versus motor vector inversions in the antisaccade task: a behavioral investigation with saccadic adaptation.
    Collins T; Vergilino-Perez D; Delisle L; Doré-Mazars K
    J Neurophysiol; 2008 May; 99(5):2708-18. PubMed ID: 18367698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The antisaccade task: Vector inversion contributes to a statistical summary representation of target eccentricities.
    Heath M; Gillen C; Weiler J
    J Vis; 2015; 15(4):4. PubMed ID: 26053143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain activation during antisaccades in unaffected relatives of schizophrenic patients.
    Raemaekers M; Ramsey NF; Vink M; van den Heuvel MP; Kahn RS
    Biol Psychiatry; 2006 Mar; 59(6):530-5. PubMed ID: 16165103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of antisaccades by transcranial magnetic stimulation of the human frontal eye field.
    Olk B; Chang E; Kingstone A; Ro T
    Cereb Cortex; 2006 Jan; 16(1):76-82. PubMed ID: 15843631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the posterior parietal cortex in the initiation of saccades and vergence: right/left functional asymmetry.
    Kapoula Z; Yang Q; Coubard O; Daunys G; Orssaud C
    Ann N Y Acad Sci; 2005 Apr; 1039():184-97. PubMed ID: 15826973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gamma-band activity in human posterior parietal cortex encodes the motor goal during delayed prosaccades and antisaccades.
    Van Der Werf J; Jensen O; Fries P; Medendorp WP
    J Neurosci; 2008 Aug; 28(34):8397-405. PubMed ID: 18716198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of antisaccade costs through manipulation of target-location probability: only under decisional uncertainty.
    Jóhannesson ÓI; Haraldsson HM; Kristjánsson Á
    Vision Res; 2013 Dec; 93():62-73. PubMed ID: 24148874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.