These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25173573)

  • 61. Using Huffman coding method to visualize and analyze DNA sequences.
    Qi ZH; Li L; Qi XQ
    J Comput Chem; 2011 Nov; 32(15):3233-40. PubMed ID: 21953557
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Similarity Estimation Between DNA Sequences Based on Local Pattern Histograms of Binary Images.
    Kobori Y; Mizuta S
    Genomics Proteomics Bioinformatics; 2016 Apr; 14(2):103-12. PubMed ID: 27132143
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Numerical encoding of DNA sequences by chaos game representation with application in similarity comparison.
    Hoang T; Yin C; Yau SS
    Genomics; 2016 Oct; 108(3-4):134-142. PubMed ID: 27538895
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pro-Frame: similarity-based gene recognition in eukaryotic DNA sequences with errors.
    Mironov AA; Novichkov PS; Gelfand MS
    Bioinformatics; 2001 Jan; 17(1):13-5. PubMed ID: 11222258
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Numerical Characterization of DNA Sequences for Alignment-free Sequence Comparison - A Review.
    Ramanathan N; Ramamurthy J; Natarajan G
    Comb Chem High Throughput Screen; 2022; 25(3):365-380. PubMed ID: 34382516
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 4D-Dynamic Representation of DNA/RNA Sequences: Studies on Genetic Diversity of
    Bielińska-Wąż D; Wąż P; Lass A; Karamon J
    Life (Basel); 2022 Jun; 12(6):. PubMed ID: 35743908
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The sieve ratio for characterization and similarity analysis of DNA sequences.
    He PA
    Comb Chem High Throughput Screen; 2005 Aug; 8(5):449-53. PubMed ID: 16101584
    [TBL] [Abstract][Full Text] [Related]  

  • 68. On the characterization of DNA primary sequences by triplet of nucleic acid bases.
    Randić M; Guo X; Basak SC
    J Chem Inf Comput Sci; 2001; 41(3):619-26. PubMed ID: 11410038
    [TBL] [Abstract][Full Text] [Related]  

  • 69. New method for comparing DNA primary sequences based on a discrimination measure.
    Feng J; Hu Y; Wan P; Zhang A; Zhao W
    J Theor Biol; 2010 Oct; 266(4):703-7. PubMed ID: 20688082
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Study of the Paired Change Points in Bacterial Genes.
    Suvorova YM; Korotkova MA; Korotkov EV
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):955-64. PubMed ID: 26356866
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Intercorrelation of Major DNA/RNA Sequence Descriptors - A Preliminary Study.
    Sen D; Dasgupta S; Pal I; Manna S; Basak SC; Nandy A; Grunwald GD
    Curr Comput Aided Drug Des; 2016; 12(3):216-228. PubMed ID: 27222032
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A space-efficient algorithm for local similarities.
    Huang XQ; Hardison RC; Miller W
    Comput Appl Biosci; 1990 Oct; 6(4):373-81. PubMed ID: 2257499
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Generalized Iterative Map for Analysis of Protein Sequences.
    Huang J; Dai Q; Yao Y; He PA
    Comb Chem High Throughput Screen; 2022; 25(3):381-391. PubMed ID: 33045963
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Applications of 2D and 3D-Dynamic Representations of DNA/RNA Sequences for a Description of Genome Sequences of Viruses.
    Bielińska-Wąż D; Wąż P; Panas D
    Comb Chem High Throughput Screen; 2022; 25(3):429-438. PubMed ID: 34348613
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characteristic sequences for DNA primary sequence.
    He PA; Wang J
    J Chem Inf Comput Sci; 2002; 42(5):1080-5. PubMed ID: 12376994
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Similarity/dissimilarity calculation methods of DNA sequences: A survey.
    Jin X; Jiang Q; Chen Y; Lee SJ; Nie R; Yao S; Zhou D; He K
    J Mol Graph Model; 2017 Sep; 76():342-355. PubMed ID: 28763687
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identifying anticancer peptides by using a generalized chaos game representation.
    Ge L; Liu J; Zhang Y; Dehmer M
    J Math Biol; 2019 Jan; 78(1-2):441-463. PubMed ID: 30291366
    [TBL] [Abstract][Full Text] [Related]  

  • 78. FermatS: A Novel Numerical Representation for Protein Sequence Comparison and DNA-binding Protein Identification.
    Zhang Y; Gao Y; Ni J; Chen P; Wang X
    Comb Chem High Throughput Screen; 2021; 24(10):1746-1753. PubMed ID: 33208064
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Two Dimensional Yau-Hausdorff Distance with Applications on Comparison of DNA and Protein Sequences.
    Tian K; Yang X; Kong Q; Yin C; He RL; Yau SS
    PLoS One; 2015; 10(9):e0136577. PubMed ID: 26384293
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Relations between Shannon entropy and genome order index in segmenting DNA sequences.
    Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041918. PubMed ID: 19518267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.