These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25173580)

  • 1. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement.
    de Nijs B; Dussi S; Smallenburg F; Meeldijk JD; Groenendijk DJ; Filion L; Imhof A; van Blaaderen A; Dijkstra M
    Nat Mater; 2015 Jan; 14(1):56-60. PubMed ID: 25173580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropically engineered formation of fivefold and icosahedral twinned clusters of colloidal shapes.
    Lee S; Glotzer SC
    Nat Commun; 2022 Nov; 13(1):7362. PubMed ID: 36450709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids.
    Urrutia BaƱuelos E; Contreras Aburto C; Maldonado Arce A
    J Chem Phys; 2016 Mar; 144(9):094504. PubMed ID: 26957168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al(6)Pd.
    Pauling L
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9637-41. PubMed ID: 16594092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free Energy Landscape of Colloidal Clusters in Spherical Confinement.
    Wang J; Mbah CF; Przybilla T; Englisch S; Spiecker E; Engel M; Vogel N
    ACS Nano; 2019 Aug; 13(8):9005-9015. PubMed ID: 31274291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A precise packing sequence for self-assembled convex structures.
    Chen T; Zhang Z; Glotzer SC
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):717-22. PubMed ID: 17215354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverted core-shell potential energy landscape of icosahedral clusters in deeply undercooled metallic liquids and glasses and its effect on the glass forming ability of bcc and fcc metals.
    Xu D; Wang Z; Chang TY; Chen F
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32619208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clusters of polyhedra in spherical confinement.
    Teich EG; van Anders G; Klotsa D; Dshemuchadse J; Glotzer SC
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):E669-78. PubMed ID: 26811458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entropy-Driven Heterogeneous Crystallization of Hard-Sphere Chains under Unidimensional Confinement.
    Ramos PM; Herranz M; Foteinopoulou K; Karayiannis NC; Laso M
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33919100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Glass Transition: Enhanced Crystallization of the Laves Phases in Nearly Hard Spheres.
    Dasgupta T; Coli GM; Dijkstra M
    ACS Nano; 2020 Apr; 14(4):3957-3968. PubMed ID: 32250589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local order and crystallization of dense polydisperse hard spheres.
    Coslovich D; Ozawa M; Berthier L
    J Phys Condens Matter; 2018 Apr; 30(14):144004. PubMed ID: 29460847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic clusters and atomic surfaces in icosahedral quasicrystals.
    Quiquandon M; Portier R; Gratias D
    Acta Crystallogr A Found Adv; 2014 May; 70(Pt 3):229-38. PubMed ID: 24815972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Icosahedral quasicrystals of intermetallic compounds are icosahedral twins of cubic crystals of three kinds, consisting of large (about 5000 atoms) icosahedral complexes in either a cubic body-centered or a cubic face-centered arrangement or smaller (about 1350 atoms) icosahedral complexes in the beta-tungsten arrangement.
    Pauling L
    Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8595-9. PubMed ID: 16594078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters.
    Bodnarchuk MI; Erni R; Krumeich F; Kovalenko MV
    Nano Lett; 2013 Apr; 13(4):1699-705. PubMed ID: 23488858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy-Driven Unconventional Crystallization of Spherical Colloidal Nanocrystals Confined in Wide Cylinders.
    Zhu G; Gao L; Xu Z; Dai X; Zhang X; Yan LT
    Nano Lett; 2021 Oct; 21(19):8439-8446. PubMed ID: 34591482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropic formation of a thermodynamically stable colloidal quasicrystal with negligible phason strain.
    Je K; Lee S; Teich EG; Engel M; Glotzer SC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(7):. PubMed ID: 33563761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for determining void arrangements in inverse opals.
    Blanford CF; Carter CB; Stein A
    J Microsc; 2004 Dec; 216(Pt 3):263-87. PubMed ID: 15566498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational self-assembly of colloidal crystals from Platonic polyhedral sphere clusters.
    Marson RL; Teich EG; Dshemuchadse J; Glotzer SC; Larson RG
    Soft Matter; 2019 Aug; 15(31):6288-6299. PubMed ID: 31334736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetically favoured defects in dense packings of particles on spherical surfaces.
    Paquay S; Kusumaatmaja H; Wales DJ; Zandi R; van der Schoot P
    Soft Matter; 2016 Jun; 12(26):5708-17. PubMed ID: 27263532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of highly ordered nanostructures by drying micrometer colloidal droplets.
    Lee SY; Gradon L; Janeczko S; Iskandar F; Okuyama K
    ACS Nano; 2010 Aug; 4(8):4717-24. PubMed ID: 20731450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.