These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25173616)

  • 1. Complete genome sequence of the cellulolytic thermophile Ruminoclostridium cellulosi wild-type strain DG5 isolated from a thermophilic biogas plant.
    Koeck DE; Wibberg D; Maus I; Winkler A; Albersmeier A; Zverlov VV; Liebl W; Pühler A; Schwarz WH; Schlüter A
    J Biotechnol; 2014 Oct; 188():136-7. PubMed ID: 25173616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Draft genome sequence of Herbinix hemicellulosilytica T3/55 T, a new thermophilic cellulose degrading bacterium isolated from a thermophilic biogas reactor.
    Koeck DE; Maus I; Wibberg D; Winkler A; Zverlov VV; Liebl W; Pühler A; Schwarz WH; Schlüter A
    J Biotechnol; 2015 Nov; 214():59-60. PubMed ID: 26253960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrigendum to "Complete genome sequence of the cellulolytic thermophile Ruminoclostridium cellulosi wild-type strain DG5 isolated from a thermophilic biogas plant" [J. Biotechnol. 188 (2014) 136-137].
    Koeck DE; Wibberg D; Maus I; Winkler A; Albersmeier A; Zverlov VV; Liebl W; Pühler A; Schwarz WH; Schlüter A
    J Biotechnol; 2016 Nov; 237():35. PubMed ID: 27642063
    [No Abstract]   [Full Text] [Related]  

  • 4. Draft genome sequence of the cellulolytic Clostridium thermocellum wild-type strain BC1 playing a role in cellulosic biomass degradation.
    Koeck DE; Wibberg D; Koellmeier T; Blom J; Jaenicke S; Winkler A; Albersmeier A; Zverlov VV; Pühler A; Schwarz WH; Schlüter A
    J Biotechnol; 2013 Oct; 168(1):62-3. PubMed ID: 23968723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First draft genome sequence of the amylolytic Bacillus thermoamylovorans wild-type strain 1A1 isolated from a thermophilic biogas plant.
    Koeck DE; Wibberg D; Maus I; Winkler A; Albersmeier A; Zverlov VV; Pühler A; Schwarz WH; Liebl W; Schlüter A
    J Biotechnol; 2014 Dec; 192 Pt A():154-5. PubMed ID: 25270021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium.
    Aikawa S; Baramee S; Sermsathanaswadi J; Thianheng P; Tachaapaikoon C; Shikata A; Waeonukul R; Pason P; Ratanakhanokchai K; Kosugi A
    Syst Appl Microbiol; 2018 Jul; 41(4):261-269. PubMed ID: 29482868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms.
    Khan AMAM; Mendoza C; Hauk VJ; Blumer-Schuette SE
    J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1251-1263. PubMed ID: 31392469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of sampling techniques and different media for the enrichment and isolation of cellulolytic organisms from biogas fermenters.
    Rettenmaier R; Duerr C; Neuhaus K; Liebl W; Zverlov VV
    Syst Appl Microbiol; 2019 Jul; 42(4):481-487. PubMed ID: 31153679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete genome sequence of the strain Defluviitoga tunisiensis L3, isolated from a thermophilic, production-scale biogas plant.
    Maus I; Cibis KG; Wibberg D; Winkler A; Stolze Y; König H; Pühler A; Schlüter A
    J Biotechnol; 2015 Jun; 203():17-8. PubMed ID: 25801333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaugmentation of the thermophilic anaerobic biodegradation of cellulose and corn stover.
    Strang O; Ács N; Wirth R; Maróti G; Bagi Z; Rákhely G; Kovács KL
    Anaerobe; 2017 Aug; 46():104-113. PubMed ID: 28554814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic characterization of Defluviitoga tunisiensis L3, a key hydrolytic bacterium in a thermophilic biogas plant and its abundance as determined by metagenome fragment recruitment.
    Maus I; Cibis KG; Bremges A; Stolze Y; Wibberg D; Tomazetto G; Blom J; Sczyrba A; König H; Pühler A; Schlüter A
    J Biotechnol; 2016 Aug; 232():50-60. PubMed ID: 27165504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete genome sequence of the cellulolytic thermophile Caldicellulosiruptor obsidiansis OB47T.
    Elkins JG; Lochner A; Hamilton-Brehm SD; Davenport KW; Podar M; Brown SD; Land ML; Hauser LJ; Klingeman DM; Raman B; Goodwin LA; Tapia R; Meincke LJ; Detter JC; Bruce DC; Han CS; Palumbo AV; Cottingham RW; Keller M; Graham DE
    J Bacteriol; 2010 Nov; 192(22):6099-100. PubMed ID: 20851897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The completely annotated genome and comparative genomics of the Peptoniphilaceae bacterium str. ING2-D1G, a novel acidogenic bacterium isolated from a mesophilic biogas reactor.
    Tomazetto G; Hahnke S; Langer T; Wibberg D; Blom J; Maus I; Pühler A; Klocke M; Schlüter A
    J Biotechnol; 2017 Sep; 257():178-186. PubMed ID: 28595834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential.
    Koeck DE; Zverlov VV; Liebl W; Schwarz WH
    Syst Appl Microbiol; 2014 Jul; 37(5):311-9. PubMed ID: 24951450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermophilic and cellulolytic consortium isolated from composting plants improves anaerobic digestion of cellulosic biomass: Toward a microbial resource management approach.
    Kinet R; Destain J; Hiligsmann S; Thonart P; Delhalle L; Taminiau B; Daube G; Delvigne F
    Bioresour Technol; 2015; 189():138-144. PubMed ID: 25879181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Genome Sequence of the Novel Cellulolytic, Anaerobic, Thermophilic Bacterium
    Pechtl A; Rückert C; Maus I; Koeck DE; Trushina N; Kornberger P; Schwarz WH; Schlüter A; Liebl W; Zverlov VV
    Genome Announc; 2018 Feb; 6(6):. PubMed ID: 29439041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Community dynamics of cellulose-adapted thermophilic bacterial consortia.
    Eichorst SA; Varanasi P; Stavila V; Zemla M; Auer M; Singh S; Simmons BA; Singer SW
    Environ Microbiol; 2013 Sep; 15(9):2573-87. PubMed ID: 23763762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic characterization and comparative genome analysis of two strains of thermophilic, anaerobic, cellulolytic-xylanolytic bacterium Herbivorax saccincola.
    Aikawa S; Thianheng P; Baramee S; Ungkulpasvich U; Tachaapaikoon C; Waeonukul R; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2020 May; 136():109517. PubMed ID: 32331721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of fibrillated oil palm trunk fiber by a novel thermophilic, anaerobic, xylanolytic bacterium Caldicoprobacter sp. CL-2 isolated from compost.
    Widyasti E; Shikata A; Hashim R; Sulaiman O; Sudesh K; Wahjono E; Kosugi A
    Enzyme Microb Technol; 2018 Apr; 111():21-28. PubMed ID: 29421033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.