BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

878 related articles for article (PubMed ID: 25173629)

  • 21. Loss of β-arrestin2 in D2 cells alters neuronal excitability in the nucleus accumbens and behavioral responses to psychostimulants and opioids.
    Porter-Stransky KA; Petko AK; Karne SL; Liles LC; Urs NM; Caron MG; Paladini CA; Weinshenker D
    Addict Biol; 2020 Nov; 25(6):e12823. PubMed ID: 31441201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ∆FosB differentially modulates nucleus accumbens direct and indirect pathway function.
    Grueter BA; Robison AJ; Neve RL; Nestler EJ; Malenka RC
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1923-8. PubMed ID: 23319622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-type-specific role for nucleus accumbens neuroligin-2 in depression and stress susceptibility.
    Heshmati M; Aleyasin H; Menard C; Christoffel DJ; Flanigan ME; Pfau ML; Hodes GE; Lepack AE; Bicks LK; Takahashi A; Chandra R; Turecki G; Lobo MK; Maze I; Golden SA; Russo SJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):1111-1116. PubMed ID: 29339486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell type-specific synaptic encoding of ethanol exposure in the nucleus accumbens shell.
    Jeanes ZM; Buske TR; Morrisett RA
    Neuroscience; 2014 Sep; 277():184-95. PubMed ID: 25003712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective alterations of NMDAR function and plasticity in D1 and D2 medium spiny neurons in the nucleus accumbens shell following chronic intermittent ethanol exposure.
    Renteria R; Maier EY; Buske TR; Morrisett RA
    Neuropharmacology; 2017 Jan; 112(Pt A):164-171. PubMed ID: 26946430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence.
    Cole SL; Robinson MJF; Berridge KC
    PLoS One; 2018; 13(11):e0207694. PubMed ID: 30496206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shisa6 mediates cell-type specific regulation of depression in the nucleus accumbens.
    Kim HD; Wei J; Call T; Quintus NT; Summers AJ; Carotenuto S; Johnson R; Ma X; Xu C; Park JG; Qiu S; Ferguson D
    Mol Psychiatry; 2021 Dec; 26(12):7316-7327. PubMed ID: 34253865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dendritic spine density is increased on nucleus accumbens D2 neurons after chronic social defeat.
    Fox ME; Figueiredo A; Menken MS; Lobo MK
    Sci Rep; 2020 Jul; 10(1):12393. PubMed ID: 32709968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repeated cocaine administration upregulates CB
    Zhang HY; De Biase L; Chandra R; Shen H; Liu QR; Gardner E; Lobo MK; Xi ZX
    Acta Pharmacol Sin; 2022 Apr; 43(4):876-888. PubMed ID: 34316031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SIRT1 Mediates Depression-Like Behaviors in the Nucleus Accumbens.
    Kim HD; Hesterman J; Call T; Magazu S; Keeley E; Armenta K; Kronman H; Neve RL; Nestler EJ; Ferguson D
    J Neurosci; 2016 Aug; 36(32):8441-52. PubMed ID: 27511015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons.
    Ma YY; Cepeda C; Chatta P; Franklin L; Evans CJ; Levine MS
    ASN Neuro; 2012 Mar; 4(2):. PubMed ID: 22273000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential Modulation of GABAergic and Glutamatergic Neurons in the Ventral Pallidum by GABA and Neuropeptides.
    Neuhofer D; Kalivas P
    eNeuro; 2023 Jul; 10(7):. PubMed ID: 37414552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum.
    Wei W; Ding S; Zhou FM
    J Neurophysiol; 2017 Mar; 117(3):987-999. PubMed ID: 27927785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli.
    Lobo MK; Zaman S; Damez-Werno DM; Koo JW; Bagot RC; DiNieri JA; Nugent A; Finkel E; Chaudhury D; Chandra R; Riberio E; Rabkin J; Mouzon E; Cachope R; Cheer JF; Han MH; Dietz DM; Self DW; Hurd YL; Vialou V; Nestler EJ
    J Neurosci; 2013 Nov; 33(47):18381-95. PubMed ID: 24259563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-Type- and Endocannabinoid-Specific Synapse Connectivity in the Adult Nucleus Accumbens Core.
    Deroche MA; Lassalle O; Castell L; Valjent E; Manzoni OJ
    J Neurosci; 2020 Jan; 40(5):1028-1041. PubMed ID: 31831522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Serotonin receptors contribute to dopamine depression of lateral inhibition in the nucleus accumbens.
    Burke DA; Alvarez VA
    Cell Rep; 2022 May; 39(6):110795. PubMed ID: 35545050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation.
    Soares-Cunha C; Coimbra B; Domingues AV; Vasconcelos N; Sousa N; Rodrigues AJ
    eNeuro; 2018; 5(2):. PubMed ID: 29780881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppressive regulation of lateral inhibition between medium spiny neurons via dopamine D
    Kohnomi S; Ebihara K; Kobayashi M
    Neurosci Lett; 2017 Jan; 636():58-63. PubMed ID: 27793700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drug Refraining and Seeking Potentiate Synapses on Distinct Populations of Accumbens Medium Spiny Neurons.
    Roberts-Wolfe D; Bobadilla AC; Heinsbroek JA; Neuhofer D; Kalivas PW
    J Neurosci; 2018 Aug; 38(32):7100-7107. PubMed ID: 29976626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptations in Nucleus Accumbens Neuron Subtypes Mediate Negative Affective Behaviors in Fentanyl Abstinence.
    Fox ME; Wulff AB; Franco D; Choi EY; Calarco CA; Engeln M; Turner MD; Chandra R; Rhodes VM; Thompson SM; Ament SA; Lobo MK
    Biol Psychiatry; 2023 Mar; 93(6):489-501. PubMed ID: 36435669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.