BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25173703)

  • 1. Radioligand development for molecular imaging of the central nervous system with positron emission tomography.
    Honer M; Gobbi L; Martarello L; Comley RA
    Drug Discov Today; 2014 Dec; 19(12):1936-44. PubMed ID: 25173703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and selection parameters to accelerate the discovery of novel central nervous system positron emission tomography (PET) ligands and their application in the development of a novel phosphodiesterase 2A PET ligand.
    Zhang L; Villalobos A; Beck EM; Bocan T; Chappie TA; Chen L; Grimwood S; Heck SD; Helal CJ; Hou X; Humphrey JM; Lu J; Skaddan MB; McCarthy TJ; Verhoest PR; Wager TT; Zasadny K
    J Med Chem; 2013 Jun; 56(11):4568-79. PubMed ID: 23651455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.
    Dollé F
    J Labelled Comp Radiopharm; 2013; 56(3-4):65-7. PubMed ID: 24285311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radioligands for the dopamine receptor subtypes.
    Prante O; Maschauer S; Banerjee A
    J Labelled Comp Radiopharm; 2013; 56(3-4):130-48. PubMed ID: 24285319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a PET radioligand for the central 5-HT1B receptor: radiosynthesis and characterization in cynomolgus monkeys of eight radiolabeled compounds.
    Andersson JD; Pierson ME; Finnema SJ; Gulyás B; Heys R; Elmore CS; Farde L; Halldin C
    Nucl Med Biol; 2011 Feb; 38(2):261-72. PubMed ID: 21315282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers?
    Joshi EM; Need A; Schaus J; Chen Z; Benesh D; Mitch C; Morton S; Raub TJ; Phebus L; Barth V
    ACS Chem Neurosci; 2014 Dec; 5(12):1154-63. PubMed ID: 25247893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of plasma protein binding of positron emission tomography radioligands by high-performance frontal analysis.
    Amini N; Nakao R; Schou M; Halldin C
    J Pharm Biomed Anal; 2014 Sep; 98():140-3. PubMed ID: 24922085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radioligands targeting purinergic P2X7 receptor.
    Zheng QH
    Bioorg Med Chem Lett; 2020 Jun; 30(12):127169. PubMed ID: 32273217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A positron emission tomography radioligand for the in vivo labeling of metabotropic glutamate 1 receptor: (3-ethyl-2-[11C]methyl-6-quinolinyl)(cis- 4-methoxycyclohexyl)methanone.
    Huang Y; Narendran R; Bischoff F; Guo N; Zhu Z; Bae SA; Lesage AS; Laruelle M
    J Med Chem; 2005 Aug; 48(16):5096-9. PubMed ID: 16078827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Drug Discovery and Development Using Molecular Imaging (ADDMI): an Interest Group of the World Molecular Imaging Society and an Inaugural Session on Positron Emission Tomography (PET).
    Patel S; Schmidt K; Hesterman J; Hoppin J
    Mol Imaging Biol; 2017 Jun; 19(3):348-356. PubMed ID: 28417265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of radioligands for in vivo imaging of type 1 cannabinoid receptors (CB1) in human brain.
    Horti AG; Van Laere K
    Curr Pharm Des; 2008; 14(31):3363-83. PubMed ID: 19075713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiopharmaceutical chemistry for positron emission tomography.
    Li Z; Conti PS
    Adv Drug Deliv Rev; 2010 Aug; 62(11):1031-51. PubMed ID: 20854860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and evaluation of [11C]GSK931145 as a novel ligand for imaging the type 1 glycine transporter with positron emission tomography.
    Passchier J; Gentile G; Porter R; Herdon H; Salinas C; Jakobsen S; Audrain H; Laruelle M; Gunn RN
    Synapse; 2010 Jul; 64(7):542-9. PubMed ID: 20196141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivatives of (-)-7-methyl-2-(5-(pyridinyl)pyridin-3-yl)-7-azabicyclo[2.2.1]heptane are potential ligands for positron emission tomography imaging of extrathalamic nicotinic acetylcholine receptors.
    Gao Y; Horti AG; Kuwabara H; Ravert HT; Hilton J; Holt DP; Kumar A; Alexander M; Endres CJ; Wong DF; Dannals RF
    J Med Chem; 2007 Aug; 50(16):3814-24. PubMed ID: 17629263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PET studies with carbon-11 radioligands in neuropsychopharmacological drug development.
    Halldin C; Gulyás B; Farde L
    Curr Pharm Des; 2001 Dec; 7(18):1907-29. PubMed ID: 11772357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain radioligands--state of the art and new trends.
    Halldin C; Gulyás B; Langer O; Farde L
    Q J Nucl Med; 2001 Jun; 45(2):139-52. PubMed ID: 11476163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiosynthesis and evaluation of new α1-adrenoceptor antagonists as PET radioligands for brain imaging.
    Airaksinen AJ; Finnema SJ; Balle T; Varnäs K; Bang-Andersen B; Gulyás B; Farde L; Halldin C
    Nucl Med Biol; 2013 Aug; 40(6):747-54. PubMed ID: 23810488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PET and SPECT imaging of the opioid system: receptors, radioligands and avenues for drug discovery and development.
    Lever JR
    Curr Pharm Des; 2007; 13(1):33-49. PubMed ID: 17266587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of new radiopharmaceuticals for imaging monoamine oxidase B.
    Vasdev N; Sadovski O; Moran MD; Parkes J; Meyer JH; Houle S; Wilson AA
    Nucl Med Biol; 2011 Oct; 38(7):933-43. PubMed ID: 21982565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological prerequisites for PET ligands and practical issues in preclinical PET research.
    Ametamey SM; Honer M
    Ernst Schering Res Found Workshop; 2007; (62):317-27. PubMed ID: 17172161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.