These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
638 related articles for article (PubMed ID: 25173727)
1. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Windeatt JH; Ross AB; Williams PT; Forster PM; Nahil MA; Singh S J Environ Manage; 2014 Dec; 146():189-197. PubMed ID: 25173727 [TBL] [Abstract][Full Text] [Related]
2. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type. Subedi R; Taupe N; Pelissetti S; Petruzzelli L; Bertora C; Leahy JJ; Grignani C J Environ Manage; 2016 Jan; 166():73-83. PubMed ID: 26484602 [TBL] [Abstract][Full Text] [Related]
3. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Ahmad M; Ahmad M; Usman ARA; Al-Faraj AS; Abduljabbar A; Ok YS; Al-Wabel MI Environ Geochem Health; 2019 Aug; 41(4):1687-1704. PubMed ID: 28337620 [TBL] [Abstract][Full Text] [Related]
4. Effect of biochars produced from solid organic municipal waste on soil quality parameters. Randolph P; Bansode RR; Hassan OA; Rehrah D; Ravella R; Reddy MR; Watts DW; Novak JM; Ahmedna M J Environ Manage; 2017 May; 192():271-280. PubMed ID: 28183027 [TBL] [Abstract][Full Text] [Related]
5. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Jeong CY; Dodla SK; Wang JJ Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554 [TBL] [Abstract][Full Text] [Related]
6. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Harvey OR; Kuo LJ; Zimmerman AR; Louchouarn P; Amonette JE; Herbert BE Environ Sci Technol; 2012 Feb; 46(3):1415-21. PubMed ID: 22242866 [TBL] [Abstract][Full Text] [Related]
7. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701 [TBL] [Abstract][Full Text] [Related]
8. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Manolikaki II; Mangolis A; Diamadopoulos E J Environ Manage; 2016 Oct; 181():536-543. PubMed ID: 27429359 [TBL] [Abstract][Full Text] [Related]
9. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation. Cui X; Hao H; He Z; Stoffella PJ; Yang X J Environ Manage; 2016 May; 173():95-104. PubMed ID: 26978731 [TBL] [Abstract][Full Text] [Related]
10. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041 [TBL] [Abstract][Full Text] [Related]
11. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil. Gusiatin ZM; Kurkowski R; Brym S; Wiśniewski D Environ Sci Pollut Res Int; 2016 Nov; 23(21):21249-21261. PubMed ID: 27495921 [TBL] [Abstract][Full Text] [Related]
12. Soil lead immobilization by biochars in short-term laboratory incubation studies. Igalavithana AD; Kwon EE; Vithanage M; Rinklebe J; Moon DH; Meers E; Tsang DCW; Ok YS Environ Int; 2019 Jun; 127():190-198. PubMed ID: 30925262 [TBL] [Abstract][Full Text] [Related]
13. Release of soluble elements from biochars derived from various biomass feedstocks. Wu H; Che X; Ding Z; Hu X; Creamer AE; Chen H; Gao B Environ Sci Pollut Res Int; 2016 Jan; 23(2):1905-15. PubMed ID: 26408115 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of biochar carbon stability methods and implications for carbon credits. Adhikari S; Moon E; Paz-Ferreiro J; Timms W Sci Total Environ; 2024 Mar; 914():169607. PubMed ID: 38154640 [TBL] [Abstract][Full Text] [Related]
15. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Lu S; Zong Y Environ Sci Pollut Res Int; 2018 Oct; 25(30):30401-30409. PubMed ID: 30159845 [TBL] [Abstract][Full Text] [Related]
16. Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites. Denyes MJ; Parisien MA; Rutter A; Zeeb BA J Vis Exp; 2014 Nov; (93):e52183. PubMed ID: 25489663 [TBL] [Abstract][Full Text] [Related]
17. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and biochar derived at different pyrolysis temperatures. Li S; Chen G Waste Manag; 2018 Aug; 78():198-207. PubMed ID: 32559905 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of biochars obtained from valorization of biowaste and evaluation of its physicochemical properties. Narzari R; Bordoloi N; Sarma B; Gogoi L; Gogoi N; Borkotoki B; Kataki R Bioresour Technol; 2017 Oct; 242():324-328. PubMed ID: 28501382 [TBL] [Abstract][Full Text] [Related]
19. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. Brassard P; Godbout S; Raghavan V J Environ Manage; 2016 Oct; 181():484-497. PubMed ID: 27420171 [TBL] [Abstract][Full Text] [Related]
20. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Hassan M; Liu Y; Naidu R; Parikh SJ; Du J; Qi F; Willett IR Sci Total Environ; 2020 Nov; 744():140714. PubMed ID: 32717463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]