These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25173872)

  • 21. Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization.
    Lie-Venema H; Eralp I; Maas S; Gittenberger-De Groot AC; Poelmann RE; DeRuiter MC
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Feb; 282(2):120-9. PubMed ID: 15627984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coronary artery established through amniote evolution.
    Mizukami K; Higashiyama H; Arima Y; Ando K; Okada N; Kose K; Yamada S; Takeuchi JK; Koshiba-Takeuchi K; Fukuhara S; Miyagawa-Tomita S; Kurihara H
    Elife; 2023 Aug; 12():. PubMed ID: 37605519
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coronary arteriogenesis and differentiation of periarterial Purkinje fibers in the chick heart: is there a link?
    Harris BS; O'Brien TX; Gourdie RG
    Tex Heart Inst J; 2002; 29(4):262-70. PubMed ID: 12484610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myocardial-specific R-spondin3 drives proliferation of the coronary stems primarily through the Leucine Rich Repeat G Protein coupled receptor LGR4.
    Da Silva F; Massa F; Motamedi FJ; Vidal V; Rocha AS; Gregoire EP; Cai CL; Wagner KD; Schedl A
    Dev Biol; 2018 Sep; 441(1):42-51. PubMed ID: 29859889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression and distribution of the calcitonin receptor-like receptor in the developing rat heart.
    Dvorakova M; Haberberger RV; Hagner S; McGregor GP; Slavikova J; Kummer W
    Anat Embryol (Berl); 2003 Dec; 207(4-5):307-15. PubMed ID: 12937976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epicardial GATA factors regulate early coronary vascular plexus formation.
    Kolander KD; Holtz ML; Cossette SM; Duncan SA; Misra RP
    Dev Biol; 2014 Feb; 386(1):204-15. PubMed ID: 24380800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coronary artery anomalies. Part I: Recent insights from molecular embryology.
    von Kodolitsch Y; Ito WD; Franzen O; Lund GK; Koschyk DH; Meinertz T
    Z Kardiol; 2004 Dec; 93(12):929-37. PubMed ID: 15599567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of the coronary vasculature: a brief review.
    Tomanek RJ
    Cardiovasc Res; 1996 Feb; 31 Spec No():E46-51. PubMed ID: 8681345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation.
    Gittenberger-de Groot AC; Vrancken Peeters MP; Bergwerff M; Mentink MM; Poelmann RE
    Circ Res; 2000 Nov; 87(11):969-71. PubMed ID: 11090540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-cell-autonomous roles for the planar cell polarity gene Vangl2 in development of the coronary circulation.
    Phillips HM; Hildreth V; Peat JD; Murdoch JN; Kobayashi K; Chaudhry B; Henderson DJ
    Circ Res; 2008 Mar; 102(5):615-23. PubMed ID: 18174466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells.
    Guadix JA; Carmona R; Muñoz-Chápuli R; Pérez-Pomares JM
    Dev Dyn; 2006 Apr; 235(4):1014-26. PubMed ID: 16456846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels.
    Mikawa T; Fischman DA
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9504-8. PubMed ID: 1409660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart.
    Tian X; Hu T; He L; Zhang H; Huang X; Poelmann RE; Liu W; Yang Z; Yan Y; Pu WT; Zhou B
    PLoS One; 2013; 8(11):e80857. PubMed ID: 24278332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporally expressed PDGF and FGF-2 regulate embryonic coronary artery formation and growth.
    Tomanek RJ; Hansen HK; Christensen LP
    Arterioscler Thromb Vasc Biol; 2008 Jul; 28(7):1237-43. PubMed ID: 18420995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular patterning of the quail coronary system during development.
    Tomanek RJ; Hansen HK; Dedkov EI
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Sep; 288(9):989-99. PubMed ID: 16892426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade.
    Travisano SI; Oliveira VL; Prados B; Grego-Bessa J; Piñeiro-Sabarís R; Bou V; Gómez MJ; Sánchez-Cabo F; MacGrogan D; de la Pompa JL
    Elife; 2019 Dec; 8():. PubMed ID: 31789590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The positions of coronary arterial ostia.
    Turner K; Navaratnam V
    Clin Anat; 1996; 9(6):376-80. PubMed ID: 8915616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart.
    Wilting J; Buttler K; Schulte I; Papoutsi M; Schweigerer L; Männer J
    Dev Biol; 2007 May; 305(2):451-9. PubMed ID: 17383624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Connexin43 deficiency causes dysregulation of coronary vasculogenesis.
    Walker DL; Vacha SJ; Kirby ML; Lo CW
    Dev Biol; 2005 Aug; 284(2):479-98. PubMed ID: 16039638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular and molecular mechanisms of coronary vessel development.
    Mu H; Ohashi R; Lin P; Yao Q; Chen C
    Vasc Med; 2005 Feb; 10(1):37-44. PubMed ID: 15920999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.