These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25173920)

  • 21. Improving Walking, Muscle Strength, and Balance in the Elderly with an Exergame Using Kinect: A Randomized Controlled Trial.
    Sato K; Kuroki K; Saiki S; Nagatomi R
    Games Health J; 2015 Jun; 4(3):161-7. PubMed ID: 26182059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of machine learning models in estimation of ground reaction forces during balance exergaming.
    Vonstad EK; Bach K; Vereijken B; Su X; Nilsen JH
    J Neuroeng Rehabil; 2022 Feb; 19(1):18. PubMed ID: 35152877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exergame technology and interactive interventions for elderly fall prevention: A systematic literature review.
    Choi SD; Guo L; Kang D; Xiong S
    Appl Ergon; 2017 Nov; 65():570-581. PubMed ID: 27825723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures.
    Xu X; McGorry RW
    Appl Ergon; 2015 Jul; 49():47-54. PubMed ID: 25766422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Postural control assessment via Microsoft Azure Kinect DK: An evaluation study.
    Antico M; Balletti N; Laudato G; Lazich A; Notarantonio M; Oliveto R; Ricciardi S; Scalabrino S; Simeone J
    Comput Methods Programs Biomed; 2021 Sep; 209():106324. PubMed ID: 34375852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing for movement quality in exergames: lessons learned from observing senior citizens playing stepping games.
    Skjæret N; Nawaz A; Ystmark K; Dahl Y; Helbostad JL; Svanæs D; Vereijken B
    Gerontology; 2015; 61(2):186-94. PubMed ID: 25402845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Bespoke Kinect Stepping Exergame for Improving Physical and Cognitive Function in Older People: A Pilot Study.
    Garcia JA; Schoene D; Lord SR; Delbaere K; Valenzuela T; Navarro KF
    Games Health J; 2016 Dec; 5(6):382-388. PubMed ID: 27860515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time posture reconstruction for Microsoft Kinect.
    Shum HP; Ho ES; Jiang Y; Takagi S
    IEEE Trans Cybern; 2013 Oct; 43(5):1357-69. PubMed ID: 23981562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voluntary sway and rapid orthogonal transitions of voluntary sway in young adults, and low and high fall-risk older adults.
    Tucker MG; Kavanagh JJ; Morrison S; Barrett RS
    Clin Biomech (Bristol, Avon); 2009 Oct; 24(8):597-605. PubMed ID: 19564063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the multi-segmental postural movement strategies utilized in bipedal, tandem and one-leg stance as quantified by a principal component decomposition of marker coordinates.
    Federolf P; Roos L; Nigg BM
    J Biomech; 2013 Oct; 46(15):2626-33. PubMed ID: 24021753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of the Microsoft Kinect system to characterize balance ability during balance training.
    Lim D; Kim C; Jung H; Jung D; Chun KJ
    Clin Interv Aging; 2015; 10():1077-83. PubMed ID: 26170647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time human movement retrieval and assessment with Kinect sensor.
    Hu MC; Chen CW; Cheng WH; Chang CH; Lai JH; Wu JL
    IEEE Trans Cybern; 2015 Apr; 45(4):742-53. PubMed ID: 25069133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson's disease: a single-blinded randomized controlled trial.
    Shih MC; Wang RY; Cheng SJ; Yang YR
    J Neuroeng Rehabil; 2016 Aug; 13(1):78. PubMed ID: 27568011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Game analysis and clinical use of the Xbox-Kinect for stroke rehabilitation.
    Givon Schaham N; Zeilig G; Weingarden H; Rand D
    Int J Rehabil Res; 2018 Dec; 41(4):323-330. PubMed ID: 29994922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction Preference Differences between Elderly and Younger Exergame Users.
    Wang Y; Huang Y; Xu J; Bao D
    Int J Environ Res Public Health; 2021 Nov; 18(23):. PubMed ID: 34886309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Video game-based coordinative training improves ataxia in children with degenerative ataxia.
    Ilg W; Schatton C; Schicks J; Giese MA; Schöls L; Synofzik M
    Neurology; 2012 Nov; 79(20):2056-60. PubMed ID: 23115212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Keeping up with video game technology: objective analysis of Xbox Kinect™ and PlayStation 3 Move™ for use in burn rehabilitation.
    Parry I; Carbullido C; Kawada J; Bagley A; Sen S; Greenhalgh D; Palmieri T
    Burns; 2014 Aug; 40(5):852-9. PubMed ID: 24296065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influences of foot placement on lumbopelvic rhythm during trunk flexion motion.
    Zhou J; Ning X; Hu B; Dai B
    J Biomech; 2016 Jun; 49(9):1692-1697. PubMed ID: 27083060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Balance training monitoring and individual response during unstable vs. stable balance Exergaming in elderly adults: Findings from a randomized controlled trial.
    Bakker J; Donath L; Rein R
    Exp Gerontol; 2020 Oct; 139():111037. PubMed ID: 32730797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An impact study of the design of exergaming parameters on body intensity from objective and gameplay-based player experience perspectives, based on balance training exergame.
    Sun TL; Lee CH
    PLoS One; 2013; 8(7):e69471. PubMed ID: 23922716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.