These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Two protein 4.1 domains essential for mitotic spindle and aster microtubule dynamics and organization in vitro. Krauss SW; Lee G; Chasis JA; Mohandas N; Heald R J Biol Chem; 2004 Jun; 279(26):27591-8. PubMed ID: 15102852 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. Hotta T; Kong Z; Ho CM; Zeng CJ; Horio T; Fong S; Vuong T; Lee YR; Liu B Plant Cell; 2012 Apr; 24(4):1494-509. PubMed ID: 22505726 [TBL] [Abstract][Full Text] [Related]
24. The role of the augmin complex in establishing microtubule arrays. Tian J; Kong Z J Exp Bot; 2019 Jun; 70(12):3035-3041. PubMed ID: 30882862 [TBL] [Abstract][Full Text] [Related]
26. Augmin Antagonizes Katanin at Microtubule Crossovers to Control the Dynamic Organization of Plant Cortical Arrays. Wang G; Wang C; Liu W; Ma Y; Dong L; Tian J; Yu Y; Kong Z Curr Biol; 2018 Apr; 28(8):1311-1317.e3. PubMed ID: 29657114 [TBL] [Abstract][Full Text] [Related]
27. Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry. Zimmerman WC; Sillibourne J; Rosa J; Doxsey SJ Mol Biol Cell; 2004 Aug; 15(8):3642-57. PubMed ID: 15146056 [TBL] [Abstract][Full Text] [Related]
28. Dissecting Protein Complexes in Branching Microtubule Nucleation Using Meiotic Song JG; Petry S Cold Spring Harb Protoc; 2018 Sep; 2018(9):pdb.prot100958. PubMed ID: 29321281 [TBL] [Abstract][Full Text] [Related]
29. Spatiotemporal organization of branched microtubule networks. Thawani A; Stone HA; Shaevitz JW; Petry S Elife; 2019 May; 8():. PubMed ID: 31066674 [TBL] [Abstract][Full Text] [Related]
30. Differing requirements for Augmin in male meiotic and mitotic spindle formation in Drosophila. Savoian MS; Glover DM Open Biol; 2014 May; 4(5):140047. PubMed ID: 24829288 [TBL] [Abstract][Full Text] [Related]
33. Structural analysis of the role of TPX2 in branching microtubule nucleation. Alfaro-Aco R; Thawani A; Petry S J Cell Biol; 2017 Apr; 216(4):983-997. PubMed ID: 28264915 [TBL] [Abstract][Full Text] [Related]
34. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Wilde A; Zheng Y Science; 1999 May; 284(5418):1359-62. PubMed ID: 10334991 [TBL] [Abstract][Full Text] [Related]
35. Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation. Félix MA; Antony C; Wright M; Maro B J Cell Biol; 1994 Jan; 124(1-2):19-31. PubMed ID: 8294501 [TBL] [Abstract][Full Text] [Related]
36. Microtubule nucleation: The waltz between γ-tubulin ring complex and associated proteins. Liu P; Würtz M; Zupa E; Pfeffer S; Schiebel E Curr Opin Cell Biol; 2021 Feb; 68():124-131. PubMed ID: 33190097 [TBL] [Abstract][Full Text] [Related]
37. Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Brunet S; Sardon T; Zimmerman T; Wittmann T; Pepperkok R; Karsenti E; Vernos I Mol Biol Cell; 2004 Dec; 15(12):5318-28. PubMed ID: 15385625 [TBL] [Abstract][Full Text] [Related]
38. XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules. Reber SB; Baumgart J; Widlund PO; Pozniakovsky A; Howard J; Hyman AA; Jülicher F Nat Cell Biol; 2013 Sep; 15(9):1116-22. PubMed ID: 23974040 [TBL] [Abstract][Full Text] [Related]