These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 25173975)
41. The Drosophila gamma-tubulin small complex subunit Dgrip84 is required for structural and functional integrity of the spindle apparatus. Colombié N; Vérollet C; Sampaio P; Moisand A; Sunkel C; Bourbon HM; Wright M; Raynaud-Messina B Mol Biol Cell; 2006 Jan; 17(1):272-82. PubMed ID: 16236791 [TBL] [Abstract][Full Text] [Related]
42. Protein 4.1R, a microtubule-associated protein involved in microtubule aster assembly in mammalian mitotic extract. Huang SC; Jagadeeswaran R; Liu ES; Benz EJ J Biol Chem; 2004 Aug; 279(33):34595-602. PubMed ID: 15184364 [TBL] [Abstract][Full Text] [Related]
43. The gammaTuRC revisited: a comparative analysis of interphase and mitotic human gammaTuRC redefines the set of core components and identifies the novel subunit GCP8. Teixidó-Travesa N; Villén J; Lacasa C; Bertran MT; Archinti M; Gygi SP; Caelles C; Roig J; Lüders J Mol Biol Cell; 2010 Nov; 21(22):3963-72. PubMed ID: 20861304 [TBL] [Abstract][Full Text] [Related]
44. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Ohba T; Nakamura M; Nishitani H; Nishimoto T Science; 1999 May; 284(5418):1356-8. PubMed ID: 10334990 [TBL] [Abstract][Full Text] [Related]
45. Emergent Properties of the Metaphase Spindle. Reber S; Hyman AA Cold Spring Harb Perspect Biol; 2015 Jul; 7(7):a015784. PubMed ID: 26134313 [TBL] [Abstract][Full Text] [Related]
47. A new Augmin subunit, Msd1, demonstrates the importance of mitotic spindle-templated microtubule nucleation in the absence of functioning centrosomes. Wainman A; Buster DW; Duncan T; Metz J; Ma A; Sharp D; Wakefield JG Genes Dev; 2009 Aug; 23(16):1876-81. PubMed ID: 19684111 [TBL] [Abstract][Full Text] [Related]
48. Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle. Yang G; Cameron LA; Maddox PS; Salmon ED; Danuser G J Cell Biol; 2008 Aug; 182(4):631-9. PubMed ID: 18710922 [TBL] [Abstract][Full Text] [Related]
49. The augmin connection in the geometry of microtubule networks. Sánchez-Huertas C; Lüders J Curr Biol; 2015 Mar; 25(7):R294-9. PubMed ID: 25829017 [TBL] [Abstract][Full Text] [Related]
50. Mechanisms of Mitotic Spindle Assembly. Petry S Annu Rev Biochem; 2016 Jun; 85():659-83. PubMed ID: 27145846 [TBL] [Abstract][Full Text] [Related]
51. Promiscuous Binding of Microprotein Mozart1 to γ-Tubulin Complex Mediates Specific Subcellular Targeting to Control Microtubule Array Formation. Huang TL; Wang HJ; Chang YC; Wang SW; Hsia KC Cell Rep; 2020 Jun; 31(13):107836. PubMed ID: 32610137 [TBL] [Abstract][Full Text] [Related]
52. HURP is part of a Ran-dependent complex involved in spindle formation. Koffa MD; Casanova CM; Santarella R; Köcher T; Wilm M; Mattaj IW Curr Biol; 2006 Apr; 16(8):743-54. PubMed ID: 16631581 [TBL] [Abstract][Full Text] [Related]
53. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Walczak CE; Vernos I; Mitchison TJ; Karsenti E; Heald R Curr Biol; 1998 Jul 30-Aug 13; 8(16):903-13. PubMed ID: 9707401 [TBL] [Abstract][Full Text] [Related]
54. The Xenopus TACC homologue, maskin, functions in mitotic spindle assembly. O'Brien LL; Albee AJ; Liu L; Tao W; Dobrzyn P; Lizarraga SB; Wiese C Mol Biol Cell; 2005 Jun; 16(6):2836-47. PubMed ID: 15788567 [TBL] [Abstract][Full Text] [Related]
55. The dynamics of microtubule minus ends in the human mitotic spindle. Lecland N; Lüders J Nat Cell Biol; 2014 Aug; 16(8):770-8. PubMed ID: 24976384 [TBL] [Abstract][Full Text] [Related]
56. Drosophila melanogaster mini spindles TOG3 utilizes unique structural elements to promote domain stability and maintain a TOG1- and TOG2-like tubulin-binding surface. Howard AE; Fox JC; Slep KC J Biol Chem; 2015 Apr; 290(16):10149-62. PubMed ID: 25720490 [TBL] [Abstract][Full Text] [Related]
57. An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation. Nakaoka Y; Miki T; Fujioka R; Uehara R; Tomioka A; Obuse C; Kubo M; Hiwatashi Y; Goshima G Plant Cell; 2012 Apr; 24(4):1478-93. PubMed ID: 22505727 [TBL] [Abstract][Full Text] [Related]
58. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Sulimenko V; Hájková Z; Klebanovych A; Dráber P Protoplasma; 2017 May; 254(3):1187-1199. PubMed ID: 28074286 [TBL] [Abstract][Full Text] [Related]
59. Reconstitution and mechanistic dissection of the human microtubule branching machinery. Zhang Y; Hong X; Hua S; Jiang K J Cell Biol; 2022 Jul; 221(7):. PubMed ID: 35604367 [TBL] [Abstract][Full Text] [Related]
60. The Nup107-160 complex and gamma-TuRC regulate microtubule polymerization at kinetochores. Mishra RK; Chakraborty P; Arnaoutov A; Fontoura BM; Dasso M Nat Cell Biol; 2010 Feb; 12(2):164-9. PubMed ID: 20081840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]