These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 25174374)
1. Tissue-specific hormonal profiling during dormancy release in macaw palm seeds. Ribeiro LM; Garcia QS; Müller M; Munné-Bosch S Physiol Plant; 2015 Apr; 153(4):627-42. PubMed ID: 25174374 [TBL] [Abstract][Full Text] [Related]
2. Control of macaw palm seed germination by the gibberellin/abscisic acid balance. Bicalho EM; Pintó-Marijuan M; Morales M; Müller M; Munné-Bosch S; Garcia QS Plant Biol (Stuttg); 2015 Sep; 17(5):990-6. PubMed ID: 25818098 [TBL] [Abstract][Full Text] [Related]
3. Haustorium-endosperm relationships and the integration between developmental pathways during reserve mobilization in Butia capitata (Arecaceae) seeds. Souza Dias D; Monteiro Ribeiro L; Sérgio Nascimento Lopes P; Aclécio Melo G; Müller M; Munné-Bosch S Ann Bot; 2018 Aug; 122(2):267-277. PubMed ID: 29788057 [TBL] [Abstract][Full Text] [Related]
4. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Chiwocha SD; Cutler AJ; Abrams SR; Ambrose SJ; Yang J; Ross AR; Kermode AR Plant J; 2005 Apr; 42(1):35-48. PubMed ID: 15773852 [TBL] [Abstract][Full Text] [Related]
5. Effect of root length on epicotyl dormancy release in seeds of Paeonia ludlowii, Tibetan peony. Hao HP; He Z; Li H; Shi L; Tang YD Ann Bot; 2014 Feb; 113(3):443-52. PubMed ID: 24284815 [TBL] [Abstract][Full Text] [Related]
6. Hormonal profile and the role of cell expansion in the germination control of Cerrado biome palm seeds. Dias DS; Ribeiro LM; Lopes PSN; Munné-Bosch S; Garcia QS Plant Physiol Biochem; 2017 Sep; 118():168-177. PubMed ID: 28641139 [TBL] [Abstract][Full Text] [Related]
7. Common and distinct responses in phytohormone and vitamin E changes during seed burial and dormancy in Xyris bialata and X. peregrina. Garcia QS; Giorni VT; Müller M; Munné-Bosch S Plant Biol (Stuttg); 2012 Mar; 14(2):347-53. PubMed ID: 21972817 [TBL] [Abstract][Full Text] [Related]
8. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357 [TBL] [Abstract][Full Text] [Related]
9. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. Jhanji S; Goyal E; Chumber M; Kaur G Plant Physiol Biochem; 2024 Feb; 207():108352. PubMed ID: 38266558 [TBL] [Abstract][Full Text] [Related]
10. Cytological and histochemical evaluations reveal roles of the cotyledonary petiole in the germination and seedling development of Mauritia flexuosa (Arecaceae). Ferreira Moura AC; Ribeiro LM; Mazzottini-Dos-Santos HC; Mercadante-Simões MO; Nunes YRF Protoplasma; 2019 Sep; 256(5):1299-1316. PubMed ID: 31049757 [TBL] [Abstract][Full Text] [Related]
11. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice. Du W; Cheng J; Cheng Y; Wang L; He Y; Wang Z; Zhang H Plant Biol (Stuttg); 2015 Nov; 17(6):1156-64. PubMed ID: 26205956 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae). Walker M; Pérez M; Steinbrecher T; Gawthrop F; Pavlović I; Novák O; Tarkowská D; Strnad M; Marone F; Nakabayashi K; Leubner-Metzger G Plant J; 2021 Nov; 108(4):1020-1036. PubMed ID: 34510583 [TBL] [Abstract][Full Text] [Related]
13. Roles of the haustorium and endosperm during the development of seedlings of Acrocomia aculeata (Arecaceae): dynamics of reserve mobilization and accumulation. Mazzottini-Dos-Santos HC; Ribeiro LM; Oliveira DMT Protoplasma; 2017 Jul; 254(4):1563-1578. PubMed ID: 27885443 [TBL] [Abstract][Full Text] [Related]
14. The roles of auxin in seed dormancy and germination. Shuai HW; Meng YJ; Luo XF; Chen F; Qi Y; Yang WY; Shu K Yi Chuan; 2016 Apr; 38(4):314-22. PubMed ID: 27103455 [TBL] [Abstract][Full Text] [Related]
15. Overcoming seed dormancy using gibberellic acid and the performance of young Syagrus coronata plants under severe drought stress and recovery. Medeiros MJ; Oliveira MT; Willadino L; Santos MG Plant Physiol Biochem; 2015 Dec; 97():278-86. PubMed ID: 26509497 [TBL] [Abstract][Full Text] [Related]
16. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds. Chen SY; Kuo SR; Chien CT Tree Physiol; 2008 Sep; 28(9):1431-9. PubMed ID: 18595855 [TBL] [Abstract][Full Text] [Related]
17. ABA and GA Barreto LC; Herken DMD; Silva BMR; Munné-Bosch S; Garcia QS Planta; 2020 Mar; 251(4):86. PubMed ID: 32221719 [TBL] [Abstract][Full Text] [Related]
18. Water content: a key factor of the induction of secondary dormancy in barley grains as related to ABA metabolism. Hoang HH; Sotta B; Gendreau E; Bailly C; Leymarie J; Corbineau F Physiol Plant; 2013 Jun; 148(2):284-96. PubMed ID: 23061651 [TBL] [Abstract][Full Text] [Related]
19. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Ali-Rachedi S; Bouinot D; Wagner MH; Bonnet M; Sotta B; Grappin P; Jullien M Planta; 2004 Jul; 219(3):479-88. PubMed ID: 15060827 [TBL] [Abstract][Full Text] [Related]
20. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos. Cembrowska-Lech D; Kępczyński J Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]