BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 25174499)

  • 21. Liquid chromatography studies on the enzymatic degradation of luteinizing hormone-releasing hormone analogues with off-line identification by mass spectrometry.
    Péter A; Devadder S; Laus G; Tourwé D
    J Chromatogr A; 1996 Apr; 729(1-2):137-42. PubMed ID: 9004935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased paracellular absorption by bile salts and P-glycoprotein stimulated efflux of otilonium bromide in Caco-2 cells monolayers as a model of intestinal barrier.
    Catalioto RM; Triolo A; Giuliani S; Altamura M; Evangelista S; Maggi CA
    J Pharm Sci; 2008 Sep; 97(9):4087-100. PubMed ID: 18200532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development, validation, and application of a novel 7-day Caco-2 cell culture system.
    Cai Y; Xu C; Chen P; Hu J; Hu R; Huang M; Bi H
    J Pharmacol Toxicol Methods; 2014; 70(2):175-81. PubMed ID: 25034865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caco-2 cells permeability evaluation of nifuroxazide derivatives with potential activity against methicillin-resistant Staphylococcus aureus (MRSA).
    B Fernandes M; Gonçalves JE; C Tavares L; Storpirtis S
    Drug Dev Ind Pharm; 2015; 41(7):1066-72. PubMed ID: 24918173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of Glucose Transport by Tomatoside A, a Tomato Seed Steroidal Saponin, through the Suppression of GLUT2 Expression in Caco-2 Cells.
    Li B; Terazono Y; Hirasaki N; Tatemichi Y; Kinoshita E; Obata A; Matsui T
    J Agric Food Chem; 2018 Feb; 66(6):1428-1434. PubMed ID: 29355315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absorption of poorly water soluble drugs subject to apical efflux using phospholipids as solubilizers in the Caco-2 cell model.
    Kapitza SB; Michel BR; van Hoogevest P; Leigh ML; Imanidis G
    Eur J Pharm Biopharm; 2007 Apr; 66(1):146-58. PubMed ID: 17071065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transepithelial transport of 6-O-caffeoylsophorose across Caco-2 cell monolayers.
    Phuong HL; Qiu J; Kuwahara T; Fukui K; Yoshiyama K; Matsugano K; Terahara N; Matsui T
    Food Chem; 2013 May; 138(1):101-6. PubMed ID: 23265462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.
    Dahan A; Amidon GL
    Mol Pharm; 2009; 6(1):19-28. PubMed ID: 19248230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Intestional absorption and mechanism of tiliani in Caco-2 cell model].
    Huang Z; Xing J; Wang X; Wang S; Yuan Y
    Zhongguo Zhong Yao Za Zhi; 2012 May; 37(9):1315-8. PubMed ID: 22803383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effective treatment of experimental human endometrial cancers with targeted cytotoxic luteinizing hormone-releasing hormone analogues AN-152 and AN-207.
    Engel JB; Keller G; Schally AV; Nagy A; Chism DD; Halmos G
    Fertil Steril; 2005 Apr; 83 Suppl 1():1125-33. PubMed ID: 15831285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of structural modification of α-aminoxy peptides on their intestinal absorption and transport mechanism.
    Ma B; Zha H; Li N; Yang D; Lin G
    Mol Pharm; 2011 Aug; 8(4):1073-82. PubMed ID: 21630669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of icariside II-phospholipid complex and its absorption across Caco-2 cell monolayers.
    Jin X; Zhang ZH; Sun E; Tan XB; Zhu FX; Li SL; Jia XB
    Pharmazie; 2012 Apr; 67(4):293-8. PubMed ID: 22570934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport characteristics of rutin deca (H-) sulfonate sodium across Caco-2 cell monolayers.
    He Y; Zeng S
    J Pharm Pharmacol; 2005 Oct; 57(10):1297-303. PubMed ID: 16259758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of P-glycoprotein mediated efflux on absorption of 11 sedating and less-sedating antihistamines using Caco-2 monolayers.
    Crowe A; Wright C
    Xenobiotica; 2012 Jun; 42(6):538-49. PubMed ID: 22188412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the route of absorption of lipid and sugar modified leu-enkephalin analogues and their enzymatic stability using the caco-2 cell monolayer system.
    Wu S; Campbell C; Koda Y; Blanchfield JT; Toth I
    Med Chem; 2006 Mar; 2(2):203-11. PubMed ID: 16787368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study.
    Sun H; Pang KS
    Drug Metab Dispos; 2008 Jan; 36(1):102-23. PubMed ID: 17932224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disposition mechanisms of raloxifene in the human intestinal Caco-2 model.
    Jeong EJ; Lin H; Hu M
    J Pharmacol Exp Ther; 2004 Jul; 310(1):376-85. PubMed ID: 15020665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium-dependent glucose transporter 1 and glucose transporter 2 mediate intestinal transport of quercetrin in Caco-2 cells.
    Li S; Liu J; Li Z; Wang L; Gao W; Zhang Z; Guo C
    Food Nutr Res; 2020; 64():. PubMed ID: 32612490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trivariate Linear Regression and Machine Learning Prediction of Possible Roles of Efflux Transporters in Estimated Intestinal Permeability Values of 301 Disparate Chemicals.
    Shimizu M; Hayasaka R; Kamiya Y; Yamazaki H
    Biol Pharm Bull; 2022 Aug; 45(8):1142-1157. PubMed ID: 35644566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular Retention of Three Quinuclidine Derivatives in Caco-2 Permeation Experiments: Mechanisms and Impact on Estimating Permeability and Active Efflux Ratio.
    Jin H; Kapadnis S; Chen T; Lee D; McRiner A; Cook A; Burnett DA; Koenig G; Tang C
    Drug Metab Lett; 2016; 10(3):161-171. PubMed ID: 27456669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.